Numerical Simulation of Dynamic Flow Characteristics in a Centrifugal Water Pump Considering Shaft Torsional Vibration

Author(s):  
Shen Lv ◽  
Xiang-Yuan Zhang ◽  
Chen-Xing Jiang ◽  
Wan-You Li ◽  
Zhi-Jun Shuai ◽  
...  

The complex three-dimensional turbulent flow field in a centrifugal water pump is numerically simulated considering torsional vibration of the shaft. The characteristic frequency and the frequency modulation phenomenon is investigated when the fluctuated-rotation-speed is considered. The results show that the amplitude of pressure fluctuation is bigger when the rotating-speed of shaft is unsteady, indicating that the speed fluctuations of impellers intensify the nonuniformity and instability of the whole flow field inside the pump. Besides, the Blade Passing Frequency (BPF) has obvious sidelobe frequency peaks when different frequency rate of speed appears. It can be concluded that sidelobes maybe come from the torsional vibration of the shaft. The main findings of this work can provide prediction of the pump performance and information for further optimal design of centrifugal pumps as well.

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 919
Author(s):  
Jia Li ◽  
Xin Wang ◽  
Yue Wang ◽  
Wancheng Wang ◽  
Baibing Chen ◽  
...  

Aero-fuel centrifugal pumps are important power plants in aero-engines. Unlike most of the existing centrifugal pumps, a combination impeller is integrated with the pump to improve performance. First, the critical geometrical parameters of the combination impeller and volute are given. Then, the effects of the combination impeller on the flow characteristics of the impeller and volute are clarified by comparing simulation results with that of the conventional impeller, where the effectiveness of the selected numerical method is validated by an acceptable agreement between simulation and experiment. Finally, the experiment is set to test the external performance of the studied pump. A significant feature of this study is that the flow characteristics are significantly ameliorated by reducing the flow losses that emerged in the impeller inlet, impeller outlet, and volute tongue. Correspondingly, the head and efficiency of a combination impeller are higher with comparison to a conventional impeller. Consequently, it is a promising approach in ameliorating the flow field and improving external performance by applying a combination impeller to an aero-fuel centrifugal pump.


Author(s):  
Xiaojun Jiang ◽  
Yi Li ◽  
Zhaohui He ◽  
Cui Baoling ◽  
Wenlong Dong

The three-dimensional flow field characteristics are obtained by performing numerical simulation of flow in a lobe pump with twisted rotors. The relationship between the dynamic flow structure and the flow fluctuation is explored. Actually, the viscous incompressible Navier-Stokes equations are solved within an unsteady flow model. The dynamic mesh technique is applied to obtain the dynamic flow structure. By comparing the simulated results of straight rotor with those of twisted rotor, the effect of rotor shape on the flow fluctuation was revealed. Finally, the impact of the lobes number of rotors on flow pulsations is discussed. The results show that there is an intrinsic relationship between the flow fluctuation and the vortex in the lobe pump. The use of twisted rotors can effectively improve the internal flow characteristics of lobe pump and reduce flow fluctuation. With the increase of the number of lobes, the lobe pump output is more stable and capacity has been improved.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Stephan Mohr ◽  
Henry Clarke ◽  
Colin P. Garner ◽  
Neville Rebelo ◽  
Andrew M. Williams ◽  
...  

Flow coefficients of intake valves and port combinations were determined experimentally for a compressed nitrogen engine under steady-state and dynamic flow conditions for inlet pressures up to 3.2 MPa. Variable valve timing was combined with an indexed parked piston cylinder unit for testing valve flows at different cylinder volumes while maintaining realistic in-cylinder transient pressure profiles by simply using a fixed area outlet orifice. A one-dimensional modeling approach describing three-dimensional valve flow characteristics has been developed by the use of variable flow coefficients that take into account the propagation of flow jets and their boundaries as a function of downstream/upstream pressure ratios. The results obtained for the dynamic flow cases were compared with steady-state results for the cylinder to inlet port pressure ratios ranges from 0.18 to 0.83. The deviation of flow coefficients for both cases is discussed using pulsatile flow theory. The key findings include the followings: (1) for a given valve lift, the steady-state flow coefficients fall by up to 21% with increasing cylinder/manifold pressure ratios within the measured range given above and (2) transient flow coefficients deviated from those measured for the steady-state flow as the valve lift increases beyond a critical value of approximately 0.5 mm. The deviation can be due to the insufficient time of the development of steady-state boundary layers, which can be quantified by the instantaneous Womersley number defined by using the transient hydraulic diameter. We show that it is possible to predict deviations of the transient valve flow from the steady-state measurements alone.


Author(s):  
Jifeng Wang ◽  
Norbert Mu¨ller

This paper presents computational investigation of the flow in composite material axial water turbines using Finite Volume based commercial CFD package namely Fluent. Based on three dimensional numerical flow analysis and fluid-structure interaction, the flow characteristics of water turbines including nozzle, impeller and diffuser are predicted. Two particulare cases are studied and compared. The extract power of water turbine in different rotating speed and water inlet velocity are analyzed. The calculated results will provide a fundamental understanding of the impeller as water turbine, and this design method is used to shorten the design period and improve the water turbine’s performance.


Volume 3 ◽  
2004 ◽  
Author(s):  
Ankur Jain ◽  
Rochan Raj Upadhyay ◽  
Samarth Chandra ◽  
Manish Saini ◽  
Sunil Kale

A ceiling fan is the predominating comfort provider in tropical regions worldwide. It consists of an assembly of an electric motor with 3–4 blades suspended from the ceiling of a room. Despite its simplicity and widespread use, the flow induced by a ceiling fan in a closed room has not been investigated, and sub-optimal designs are in wide use. There is vast potential for energy conservation and improved comfort by developing optimized fan designs. This work develops a fundamental understanding of the flow characteristics of a ceiling operating inside a closed room. Using smoke from thick incense sticks, the flow field created by the ceiling fan is visualized. In most regions, the flow is periodic and three-dimensional. Vortices are seen to be attached to the blade tip and hub, which reduces downward flow and increases energy consumption. Only the middle 75% of blade actually pushes the air downwards, and the comfort region is limited to a cylinder directly under the blades; velocities in this region were measured with a vane anemometer. Winglets and spikes attached to the blade tip disrupted the tip vortex, and increased downflow by about 13% without any increase in power consumption.


Author(s):  
M DaqiqShirazi ◽  
R Torabi ◽  
A Riasi ◽  
SA Nourbakhsh

In this paper, the flow in the impeller sidewall gap of a low specific speed centrifugal pump is analyzed to study the effect of wear ring clearance and the resultant through-flow on flow field in this cavity and investigate the overall efficiency of the pump. Centrifugal pumps are commonly subject to a reduction in the flow rate and volumetric efficiency due to abrasive liquids or working conditions, since the wear rings are progressively worn, the internal leakage flow is increased. In the new operating point, the overall efficiency of the pump cannot be predicted simply by using the pump characteristic curves. The flow field is simulated with the use of computational fluid dynamics and the three-dimensional full Navier–Stokes equations are solved using CFX software. In order to verify the numerical simulations, static pressure field in volute casing and pump performance curves are compared with the experimental measurements. The results show that, for the pump with minimum wear ring clearance, the disk friction efficiency is the strongest factor that impairs the overall efficiency. Therefore, when the ring clearance is enlarged more than three times, although volumetric efficiency decreases effectively but the reduction in overall efficiency is remarkably smaller due to improvement in the disk friction losses.


2014 ◽  
Vol 1079-1080 ◽  
pp. 926-929
Author(s):  
Dan Han ◽  
Qian Wang ◽  
Bing Huan Li ◽  
Guo Jun Zhang ◽  
Shuo Wang

Intake port is an important part of the gasoline engine, its structure will influence the gas flow characteristics which directly affects the performance of the engine [1]. In this paper, three-dimensional CFD calculation and structural optimization were used to research the performance of gasoline engine. Firstly, the method of laser scanning and UG software were used to reverse modeling engine exhaust port and get the three-dimensional model. Secondly, after setting boundary conditions and turbulence models, the air flowing through the intake ports were simulated by FLUENT software respectively. Finally, based on numerical methods, the pressure field, velocity field were shown. The results of the simulation of flow field characteristics analysis show that the simulation and experimental results are in good agreement.


Author(s):  
T K Saha ◽  
S Soundranayagam

Measurements of the three-dimensional flow field entering and leaving a mixed flow pump of non-dimensional specific speed k = 1.89 [ Ns = 100 r/min (metric)] are discussed as a function of flowrate. Flow reversal at inlet at reduced flows is seen to result in abnormally high total pressures in the casing region, but causes no noticeable discontinuities on the head-flow characteristics. Inlet prerotation is associated with the transport of angular momentum by the reversal eddy and begins with the initiation of flow reversal.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 65 ◽  
Author(s):  
Qiaorui Si ◽  
Gérard Bois ◽  
Minquan Liao ◽  
Haoyang Zhang ◽  
Qianglei Cui ◽  
...  

Capability for handling entrained gas is an important design consideration for centrifugal pumps used in petroleum, chemistry, nuclear applications. An experimental evaluation on their two phase performance is presented for two centrifugal pumps working under air-water mixture fluid conditions. The geometries of the two pumps are designed for the same flow rate and shut off head coefficient with the same impeller rotational speed. Overal pump performance and unsteady pressure pulsation information are obtained at different rotational speeds combined with various inlet air void fractions (α0) up to pump stop condition. As seen from the test results, pump 2 is able to deliver up to 10% two-phase mixtures before pump shut-off, whereas pump 1 is limited to 8%. In order to understand the physics of this flow phenomenon, a full three-dimensional unsteady Reynolds Average Navier-Stokes (3D-URANS) calculation using the Euler–Euler inhomogeneous method are carried out to study the two phase flow characteristics of the model pump after corresponding experimental verification. The internal flow characteristics inside the impeller and volute are physically described using the obtained air distribution, velocity streamline, vortex pattern and pressure pulsation results under different flow rates and inlet void fractions. Pump performances would deteriorate during pumping two-phase mixture fluid compared with single flow conditions due to the phase separating effect. Some physical explanation about performance improvements on handing maximum acceptable inlet two phase void fractions capability of centrifugal pumps are given.


2013 ◽  
Vol 562-565 ◽  
pp. 490-495 ◽  
Author(s):  
Yu Peng Shi ◽  
Fei Tang ◽  
Xiao Hao Wang

The liquid floating rotor gyro is a gyroscope using electrostatic or electromagnetic forces to levitate rotor, and filling rotor-stator cavities with liquid in order to improve stability of motion. Under influence of the relative surface roughness, rotor velocity, dimension of flow field and fluid nature, flow characteristics of cavity flow field vary under different boundary conditions and geometrical conditions. This paper adopts three-dimensional model and periodic boundary conditions to conduct numerical modeling on cavity flow field. Its results show that, with velocity rising, distribution of flow field speed and pressure manifests partial fluctuations in turbulent-flow-intensive area; resistance torque amid rotor rotation is nonlinearly correlated with velocity, whose rules can be obtained through high-order curve fitting.


Sign in / Sign up

Export Citation Format

Share Document