An Experimental Study of Stall Suppression and Associated Changes to the Flow Structures in the Tip Region of an Axial Low Speed Fan Rotor by Axial Casing Grooves

Author(s):  
Huang Chen ◽  
Yuanchao Li ◽  
Subhra Shankha Koley ◽  
Nick Doeller ◽  
Joseph Katz

The effects of axial casing grooves on the performance and flow structures in the tip region of an axial low speed fan rotor have been studied experimentally in the JHU refractive index-matched liquid facility. The four-per-passage semicircular grooves are skewed by 45° in the positive circumferential direction, and have a diameter of 65% of the rotor blade axial chord length. A third of the groove overlaps with the blade front, and the rest extends upstream. These grooves have a dramatic effect on the machine performance, reducing the stall flow rate by 40% compared to the same machine with a smooth endwall. However, they reduce the pressure rise at high flow rates. The flow characterization consists of qualitative visualizations of vortical structures using cavitation, as well as stereo-PIV (SPIV) measurements in several meridional and (z,θ) planes covering the tip region and interior of the casing grooves. The experiments are performed at a flow rate corresponding to pre-stall conditions for the untreated machine. They show that the flow into the downstream sides of the grooves and the outflow from their upstream sides vary periodically. The inflow peaks when the downstream end is aligned with the pressure side (PS) of the blade, and decreases, but does not vanish, when this end is located near the suction side (SS). These periodic variations have three primary effects: First, substantial fractions of the leakage flow and the tip leakage vortex (TLV) are entrained periodically into the groove. Consequently, in contrast to the untreated flow, The TLV remnants remain confined to the vicinity of the entrance to the groove, and the TLV strength diminishes starting from the mid-chord. Second, the grooves prevent the formation of large scale backflow vortices (BFVs), which are associated with the TLV, propagate from one blade passage to the next, and play a key role in the onset of rotating stall in the untreated fan. Third, the flow exiting from the grooves causes periodic variations of about 10° in the relative flow angle around the blade leading edge, presumably affecting the blade loading. The distributions of turbulent kinetic energy provide statistical evidence that in contrast to the untreated casing, very little turbulence originating from a previous TLV, including the BFVs, propagates from the PS to the SS of the blade. Hence, the TLV-related turbulence remain confined to the entrance to groove. Elevated, but lower turbulence is also generated as the outflow from the groove jets into the passage.

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Huang Chen ◽  
Yuanchao Li ◽  
Subhra Shankha Koley ◽  
Nick Doeller ◽  
Joseph Katz

The effects of axial casing grooves (ACGs) on the performance and flow structures in the tip region of an axial low speed fan rotor are studied experimentally in the JHU refractive index-matched liquid facility. The four-per-passage semicircular grooves are skewed by 45 deg, overlapping partially with the blade leading edge (LE) and extending upstream. They reduce the stall flow rate by 40% compared to the same machine with a smooth endwall. Stereo-particle image velocimetry (SPIV) measurements show that the inflow into the downstream side of the grooves and the outflow from their upstream side vary periodically, peaking when the inlet is aligned with the blade pressure side (PS). This periodic suction has three effects: first, substantial fractions of the leakage flow and the tip leakage vortex (TLV) are entrained into the groove, causing a reduction in TLV strength starting from midchord. Second, the grooves prevent the formation of large-scale backflow vortices (BFVs), which are associated with the TLV, propagate from one blade passage to the next, and play a key role in the onset of rotating stall in the untreated fan. Third, the flow exiting from the grooves causes periodic variations of the relative flow angle around the blade LE, presumably affecting the blade loading. The distributions of turbulent kinetic energy (TKE) provide statistical evidence that in contrast to the untreated casing, very little turbulence originating from the TLV and BFV of one blade propagates across the tip gap to the next passage.


Author(s):  
Corine Meuleman ◽  
Frank Willems ◽  
Rick de Lange ◽  
Bram de Jager

Surge is measured in a low-speed radial compressor with a vaned diffuser. For this system, the flow coefficient at surge is determined. This coefficient is a measure for the inducer inlet flow angle and is found to increase with increasing rotational speed. Moreover, the frequency and amplitude of the pressure oscillations during fully-developed surge are compared with results obtained with the Greitzer lumped parameter model. The measured surge frequency increases when the compressor mass flow is throttled to a smaller flow rate. Simulations show that the Greitzer model describes this relation reasonably well except for low rotational speeds. The predicted amplitude of the pressure rise oscillations is approximately two times too small when deep surge is met in the simulations. For classic surge, the agreement is worse. The amplitude is found to depend strongly on the shape of the compressor and throttle characteristic, which are not accurately known.


Author(s):  
Jiayi Zhao ◽  
Guang Xi ◽  
Zhiheng Wang ◽  
Yang Zhao

The spike-type rotating stall (RS) inception inside the vaned-diffuser, which seriously restricts the performance range and brings the problems of blade fatigue, still seems to be a ‘mystery’ since its randomness. The paper intends to explain the mechanisms of this stall inception. To quantitatively assess the critical unsteady behavior to the initiation of RS inception, the transient measurement characterizes the process falling into the RS through the parameter of ‘blade passing irregularity’. The underlying vortex disturbance, related to the growing of the flow complexity and the final spike-type precursor, is further revealed by the full-annulus simulation. The results show the propagation principle of the vortexes from the design to the stall inception point, reflected by the distribution of ‘blade passing irregularity’. The performance change of different sub-components due to the vortex behavior is presented. At the RS limit, the sudden ramp-up of the ‘blade passing irregularity’ near the leading edge (LE), accompanied with the drop of the static pressure rise in the sub-component between the semi-vaneless and throat, corresponds to the spike-type inception in the form of a clockwise vortex connecting the suction side of the diffuser vane and the pressure side of the adjacent vane. Besides, when approaching the spike-type inception point, the couple effect of the growing potential of the diffuser vane and the enhanced vortex disturbance at the impeller outlet degrades the diffuser inlet flow.


Author(s):  
Yang Zhao ◽  
Jiayi Zhao ◽  
Zhiheng Wang ◽  
Guang Xi

The diffuser rotating stall in a centrifugal compressor with vaned diffuser is one of important unsteady flow phenomena, which limits the operating range of the compressor. In this paper, the unsteady CFD analysis on a low-speed centrifugal compressor has been performed to investigate the flow characteristic in the diffuser and the propagation of the diffuser rotating stall. The flow behaviors at the outlet of the impeller at design and off-design conditions are firstly investigated. It is found that a reversal flow, induced by the tip leakage flow, exists near the shroud at the impeller outlet and becomes serious with the mass flow rate reduced. Due to the span-wise variation of the flow angle at the diffuser inlet and the inversed pressure gradient in the passage, the leading-edge vortex (LEV) generates on the diffuser leading edge. The LEV then induces the secondary flow in the diffuser passage and then causes the hub-corner separation. Furthermore, the propagation of the diffuser rotating stall is presented in details. The suction-side separation near the hub induces the blockage in the passage. And the shedding vortex from the suction side moves toward the leading edge of the adjacent blade. When the vortex reaches to the leading edge of the adjacent blade, the incidence increase and a new separation occurs on the suction side. With the development of the new separation, the passage becomes blocked gradually and the upstream stalled passage recovers to a normal condition. The rotating stall propagates along the direction of the impeller rotation at about 4.5% of the impeller rotational speed.


2021 ◽  
Author(s):  
Tetsushi Fukuda ◽  
Yukio Masuda ◽  
Takashi Fukue ◽  
Yasuhiro Sugimoto ◽  
Tomoyuki Hatakeyama ◽  
...  

Abstract This study describes the deterioration of a small axial fan’s supply flow rate in high-density packaging electronic equipment. A cooling fan flow rate can be predicted by its P-Q curve, which shows a relationship between a pressure rise at a fan (ΔP) and a supply flow rate (Q). However, in high-density packaging electronic equipment, the fan performance is affected by the mounting components around the fans, and the accurate prediction of the supply flow rate becomes difficult. This paper tried to do flow visualization around a small axial cooling fan’s impellers when the obstruction was mounted in front of the fan through CFD analysis. A relationship between the supply flow rate by the fan and the flow pattern around the impellers was investigated while changing the distance between the test fan and the obstruction. Through this study, the following results can be obtained. The fan’s flow is stable in the rotating stall region and the higher flow rate operating points regardless of whether or without the obstruction. At the lower flow rate conditions, the formation of a complex unsteady flow is reproduced. As the flow rate decreases, the flow’s separation point becomes closer to the leading edge of the impeller. In the case of obstruction, the change of the flow pattern causes a larger attack angle. As a result, fan performance is degraded.


Author(s):  
Huang Chen ◽  
Yuanchao Li ◽  
David Tan ◽  
Joseph Katz

Flow visualizations and stereoscopic PIV (SPIV) measurements are carried out to study the flow phenomena developing in the rotor passage of an axial compressor at the onset of stall. Experiments have been performed in the JHU optically index-matched facility, using acrylic blades and liquid that have the same optical refractive index. The blade geometries are based on the first one and a half stages of the Low Speed Axial Compressor (LSAC) facility at NASA Glenn. The SPIV measurements provide detailed snapshots and ensemble statistics on the flow in a series of meridional planes. Data recorded in closely spaced planes enable us to obtain ensemble averaged 3D vorticity distributions. High speed imaging of cavitation, performed at low pressure, is used to qualitatively visualize the vortical structures within the rotor passage. The observations are performed just above and at stall conditions. At pre-stall condition, shortly after it rolled up, the tip leakage vortex (TLV) breaks up into widely distributed intermittent vortical structures. In particular, interaction of the backward tip leakage flow with the nearly opposite direction main passage flow under (radially inward) it results in periodic generation of large scale vortices that extend upstream, from the suction side (SS) of one blade to the pressure side (PS) or even near the leading edge of the next blade. When these structures penetrate to the next passage, they trigger formation of a similar phenomenon there, initiating a process that sustains itself. Once they form, these vortices rotate with the blade, indicating little through flow in the tip region. The 3D velocity and vorticity distributions confirm the presence of these large flow structures at the transition between the high circumferential velocity region below the TLV center and the main flow deeper in the passage. Further reduction in flow rate into the stall range caused a rapid increase in the number and scale of these vortices, demonstrating that their formation and proliferation plays a key role in the onset of stall.


Author(s):  
Wei Ma ◽  
Feng Gao ◽  
Xavier Ottavy ◽  
Lipeng Lu ◽  
A. J. Wang

Recently bimodal phenomenon in corner separation has been found by Ma et al. (Experiments in Fluids, 2013, doi:10.1007/s00348-013-1546-y). Through detailed and accurate experimental results of the velocity flow field in a linear compressor cascade, they discovered two aperiodic modes exist in the corner separation of the compressor cascade. This phenomenon reflects the flow in corner separation is high intermittent, and large-scale coherent structures corresponding to two modes exist in the flow field of corner separation. However the generation mechanism of the bimodal phenomenon in corner separation is still unclear and thus needs to be studied further. In order to obtain instantaneous flow field with different unsteadiness and thus to analyse the mechanisms of bimodal phenomenon in corner separation, in this paper detached-eddy simulation (DES) is used to simulate the flow field in the linear compressor cascade where bimodal phenomenon has been found in previous experiment. DES in this paper successfully captures the bimodal phenomenon in the linear compressor cascade found in experiment, including the locations of bimodal points and the development of bimodal points along a line that normal to the blade suction side. We infer that the bimodal phenomenon in the corner separation is induced by the strong interaction between the following two facts. The first is the unsteady upstream flow nearby the leading edge whose angle and magnitude fluctuate simultaneously and significantly. The second is the high unsteady separation in the corner region.


Author(s):  
Hongwei Ma ◽  
Jun Zhang

The purpose of this paper is to investigate numerically the effects of the tip geometry on the performance of an axial compressor rotor. There are three case studies which are compared with the base line tip geometry. 1) baseline (flat tip); 2) Cavity (tip with a cavity); 3) SSQA (suction side squealer tip) and 4) SSQB (modified suction side squealer tip). The case of SSQB is a combination of suction side squealer tip and the cavity tip. From leading edge to 10% chord, the tip has a cavity. From 10% chord to trailing edge, the tip has a suction side squealer. The numerical results of 2) show that the cavity tip leads to lower leakage mass flow and greater loss in tip gap and the rotor passage. The loading near the blade tip is lower than the baseline, thus the tangential force of the blade is lower. It leads to lower pressure rise than the baseline. The performance of the compressor for the tip with cavity is worse than the baseline. The results of 3) show that the higher curvature of the suction side squealer increases the loading of the blade and the tangential blade force. With the suction side squealer tip, the leakage flow experiences two vena contractor thus the mass of the leakage flow is reduced which is benefit for the performance of the compressor. The loss in the tip gap is lower than baseline. The performance is better than the baseline with greater pressure rise of the rotor, smaller leakage mass flow and lower averaged loss. For the case the SSQB, the leakage mass flow is lower than the SSQA and the loss in the tip gap and the rotor passage is greater than SSQA. The performance of the case of the SSQB is worse than the case of SSQA.


Author(s):  
Mohammad Javad Shahriyari ◽  
Hossein Khaleghi ◽  
Martin Heinrich

This paper reports on a theory for poststall transients in contra-rotating fans, which is developed from the basic Moore–Greitzer theory. A second-order hysteresis term is assumed for the fan pressure rise, which gives the theory more capabilities in predicting the fan instabilities. The effect of the rotational speed ratio of the two counter rotating rotors on the fan performance during the occurrence of surge and rotating stall are studied (the rotational speed of the front rotor is assumed to be kept constant whereas the speed of the rear rotor is variable). One of the new capabilities of the current model is the possibility of investigating the effect of the initial slope on the fan characteristic. Results reveal that unlike the conventional fans and compressors, in the current contra-rotating fan stall cannot be initiated from the negative slope portion of the fan pressure rise characteristic curve. One of the important advantages of the developed model is that it enables investigation of the effect of the rate of throttling on the instabilities. Results show that more the rotational speed of the rear rotor, the more robust to surge (caused by throttling) the fan is.


Author(s):  
Xiaojian Li ◽  
Yijia Zhao ◽  
Zhengxian Liu ◽  
Ming Zhao

To understand the flow dynamic characteristics of a centrifugal compressor, the dynamic mode decomposition (DMD) method is introduced to decompose the complex three-dimensional flow field. Three operating conditions, peak efficiency (OP1), peak pressure ratio (OP2), and small mass flow rate (near stall, OP3) conditions, are analyzed. First, the physical interpretations of main dynamic modes at OP1 are identified. As a result, the dynamic structures captured by DMD method are closely associated with the flow characteristics. In detail, the BPF/2BPF (blade passing frequency) corresponds to the impeller–diffuser interaction, the rotor frequency (RF) represents the tip leakage flow (TLF) from leading edge, and the 4RF is related to the interaction among the downstream TLF, the secondary flow, and the wake vortex. Then, the evolution of the dynamic structures is discussed when the compressor mass flow rate consistently declines. In the impeller, the tip leakage vortex near leading edge gradually breaks down due to the high backpressure, resulting in multi-frequency vortices. The broken vortices further propagate downstream along streamwise direction and then interact with the flow structures of 4RF. As a result, the 8RF mode can be observed in the whole impeller, this mode is transformed from upstream RF and 4RF modes, respectively. On the other hand, the broken vortices show broadband peak spectrum, which is correlated to the stall inception. Therefore, the sudden boost of energy ratio of 14RF mode could be regarded as a type of earlier signal for compressor instability. In the diffuser, the flow structures are affected by the perturbation from the impeller. However, the flow in diffuser is more stable than that in impeller at OP1–OP3, since the leading modes are stable patterns of BPF/2BPF.


Sign in / Sign up

Export Citation Format

Share Document