Study on Analytical Method for Thermal and Flow Field of a Turbocharger With the Catalyst Unit

Author(s):  
Tsuyoshi Kitamura ◽  
Seiichi Ibaraki ◽  
Yuichi Kihara ◽  
Toru Hoshi ◽  
Motoki Ebisu

Abstract The analytical and experimental study on thermal and flow field of a turbocharger with the catalyst unit has been conducted for the thermal management at the downstream side of turbochargers, which have crucial effects on activation of catalyst units. CHT (Conjugate Heat Transfer) calculations, working for simulating heat transfer with mutual dependence between solid structures and fluid, are applied to the turbocharger including the turbine section, the bearing housing and the catalyst unit to acquire the whole of thermal and flow field accurately. The modeling for catalyst element has also been developed. In addition, the gas stand test demonstrated turbochargers under cold start-up condition to validate CHT calculations. Analytical results are evaluated against experimental data. Eventually, the proposed analytical method has been proved to have the advantage of designing for heating catalyst units.

2017 ◽  
Vol 117 ◽  
pp. 782-798 ◽  
Author(s):  
Xianbing Ji ◽  
Ye Wang ◽  
Jinliang Xu ◽  
Yanping Huang

Author(s):  
Jong-Shang Liu ◽  
Mark C. Morris ◽  
Malak F. Malak ◽  
Randall M. Mathison ◽  
Michael G. Dunn

In order to have higher power to weight ratio and higher efficiency gas turbine engines, turbine inlet temperatures continue to rise. State-of-the-art turbine inlet temperatures now exceed the turbine rotor material capability. Accordingly, one of the best methods to protect turbine airfoil surfaces is to use film cooling on the airfoil external surfaces. In general, sizable amounts of expensive cooling flow delivered from the core compressor are used to cool the high temperature surfaces. That sizable cooling flow, on the order of 20% of the compressor core flow, adversely impacts the overall engine performance and hence the engine power density. With better understanding of the cooling flow and accurate prediction of the heat transfer distribution on airfoil surfaces, heat transfer designers can have a more efficient design to reduce the cooling flow needed for high temperature components and improve turbine efficiency. This in turn lowers the overall specific fuel consumption (SFC) for the engine. Accurate prediction of rotor metal temperature is also critical for calculations of cyclic thermal stress, oxidation, and component life. The utilization of three-dimensional computational fluid dynamics (3D CFD) codes for turbomachinery aerodynamic design and analysis is now a routine practice in the gas turbine industry. The accurate heat-transfer and metal-temperature prediction capability of any CFD code, however, remains challenging. This difficulty is primarily due to the complex flow environment of the high-pressure turbine, which features high speed rotating flow, coupling of internal and external unsteady flows, and film-cooled, heat transfer enhancement schemes. In this study, conjugate heat transfer (CHT) simulations are performed on a high-pressure cooled turbine stage, and the heat flux results at mid span are compared to experimental data obtained at The Ohio State University Gas Turbine Laboratory (OSUGTL). Due to the large difference in time scales between fluid and solid, the fluid domain is simulated as steady state while the solid domain is simulated as transient in CHT simulation. This paper compares the unsteady and transient results of the heat flux on a high-pressure cooled turbine rotor with measurements obtained at OSUGTL.


Author(s):  
Andreas Jeromin ◽  
Christian Eichler ◽  
Berthold Noll ◽  
Manfred Aigner

Numerical predictions of conjugate heat transfer on an effusion cooled flat plate were performed and compared to detailed experimental data. The commercial package CFX® is used as flow solver. The effusion holes in the referenced experiment had an inclination angle of 17 degrees and were distributed in a staggered array of 7 rows. The geometry and boundary conditions in the experiments were derived from modern gas turbine combustors. The computational domain contains a plenum chamber for coolant supply, a solid wall and the main flow duct. Conjugate heat transfer conditions are applied in order to couple the heat fluxes between the fluid region and the solid wall. The fluid domain contains 2.4 million nodes, the solid domain 300,000 nodes. Turbulence modeling is provided by the SST turbulence model which allows the resolution of the laminar sublayer without wall functions. The numerical predictions of velocity and temperature distributions at certain locations show significant differences to the experimental data in velocity and temperature profiles. It is assumed that this behavior is due to inappropriate modeling of turbulence especially in the effusion hole. Nonetheless, the numerically predicted heat transfer coefficients are in good agreement with the experimental data at low blowing ratios.


Author(s):  
Sridhar Murari ◽  
Sunnam Sathish ◽  
Ramakumar Bommisetty ◽  
Jong S. Liu

The knowledge of heat loads on the turbine is of great interest to turbine designers. Turbulence intensity and stator-rotor axial gap plays a key role in affecting the heat loads. Flow field and associated heat transfer characteristics in turbines are complex and unsteady. Computational fluid dynamics (CFD) has emerged as a powerful tool for analyzing these complex flow systems. Honeywell has been exploring the use of CFD tools for analysis of flow and heat transfer characteristics of various gas turbine components. The current study has two objectives. The first objective aims at development of CFD methodology by validation. The commercially available CFD code Fine/Turbo is used to validate the predicted results against the benchmark experimental data. Predicted results of pressure coefficient and Stanton number distributions are compared with available experimental data of Dring et al. [1]. The second objective is to investigate the influence of turbulence (0.5% and 10% Tu) and axial gaps (15% and 65% of axial chord) on flow and heat transfer characteristics. Simulations are carried out using both steady state and harmonic models. Turbulence intensity has shown a strong influence on turbine blade heat transfer near the stagnation region, transition and when the turbulent boundary layer is presented. Results show that a mixing plane is not able to capture the flow unsteady features for a small axial gap. Relatively close agreement is obtained with the harmonic model in these situations. Contours of pressure and temperature on the blade surface are presented to understand the behavior of the flow field across the interface.


Author(s):  
Michael Maurer ◽  
Uwe Ruedel ◽  
Michael Gritsch ◽  
Jens von Wolfersdorf

An experimental study was conducted to determine the heat transfer performance of advanced convective cooling techniques at the typical conditions found in a backside cooled combustion chamber. For these internal cooling channels, the Reynolds number is usually found to be above the Reynolds number range covered by available databases in the open literature. As possible candidates for an improved convective cooling configuration in terms of heat transfer augmentation and acceptable pressure drops, W-shaped and WW-shaped ribs were considered for channels with a rectangular cross section. Additionally, uniformly distributed hemispheres were investigated. Here, four different roughness spacings were studied to identify the influence on friction factors and the heat transfer enhancement. The ribs and the hemispheres were placed on one channel wall only. Pressure losses and heat transfer enhancement data for all test cases are reported. To resolve the heat transfer coefficient, a transient thermocromic liquid crystal technique was applied. Additionally, the area-averaged heat transfer coefficient on the W-shaped rib itself was observed using the so-called lumped-heat capacitance method. To gain insight into the flow field and to reveal the important flow field structures, numerical computations were conducted with the commercial code FLUENT™.


Author(s):  
Miroslaw Liszka ◽  
Aleksandr Fridlyand ◽  
Ambalavanan Jayaraman ◽  
Michael Bonnema ◽  
Chakravarthy Sishtla

Abstract A simulation of the fast filling of a 195-liter type 3 tank with hydrogen was completed with ANSYS Fluent as a baseline case for developing a CFD model capable of accurately modeling the hydrogen cylinder filling process. 141-second profiles of mass flow and temperature of the incoming hydrogen flow into the cylinder were prescribed from experimental data previously collected at the Gas Technology Institute (GTI) in Des Plaines, IL. All the simulations were completed with the coupled pressure based algorithm with the K-Omega SST turbulence model and real gas NIST properties (REFPROP) to capture the effects of compressibility of hydrogen during the filling process. Gravity was enabled in the axial direction of the cylinder. The initial pressure and temperature in the cylinder were 124 bar and 292.3 K, respectively, with a target, experimental pressure of 383 bar at the end of the filling. For the initial case, the walls of the cylinder were modelled as adiabatic to reduce the computational effort. The final pressure and temperature of the adiabatic wall case matched the experimental pressure and temperature within approximately 30 bar and 6 degrees, respectively. The overall pressure and temperature profiles over the course of the filling process also provided a good match between the simulation results and experimental data. A conjugate heat transfer case with the aluminum liner as part of the domain and an adiabatic outer wall was attempted in order to capture the heat transfer to the liner. The conjugate heat transfer case provided promising results but was taxing in the computational time needed to simulate the entire filling process. A User Defined Function (UDF) for a simple lumped heat capacitance model was applied at the wall to model the wall temperature and capture the heat transfer occurring to the wall while reducing the time needed to complete the simulation. The final pressure prediction for this case was excellent, within 3 bar of the experimental value, and matched it accurately for the duration of the fill process. The final temperature prediction worsened and exceeded the experimental value by 16 degrees Celsius. The UDF model also allowed the ability to easily explore more exotic liners such as Phase Change Materials (PCM) which were also simulated in this work.


2012 ◽  
Vol 55 (4) ◽  
pp. 1154-1163 ◽  
Author(s):  
Asif Hussain Malik ◽  
M.S.I Alvi ◽  
Shahab Khushnood ◽  
F.M. Mahfouz ◽  
M.K.K. Ghauri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document