Detailed Experimental Investigation of the Operational Parameters of a 30 kW Micro Gas Turbine

Author(s):  
Oliver Kislat ◽  
Jan Zanger ◽  
Thomas Krummrein ◽  
Peter Kutne ◽  
Manfred Aigner

Abstract Numerical studies discussing micro gas turbines (MGTs) as a basis for automotive range extenders can be found in literature. A comprehensive set of experimental measurement data for an MGT of adequate size, however, is currently not available. In this work, a test rig and demonstrator based on a 30 kWel liquid fueled MGT is built up. Its major components’ performance is characterized by measuring temperature and pressure at inlet and outlet, as well as corresponding fuel and air flows and the exhaust gas composition. A compressor bleed air tapping is installed to characterize the turbo components’ off-design behavior. Stationary load points and transient maneuvers are investigated. The presented data provide coherent information on the operational behavior and cycle parameters. This can be used to validate existing numerical investigations. It further provides a foundation to identify the optimization potential of MGT components and will serve as design baseline for subsequent optimization measures to meet the requirements of mobile applications.

2009 ◽  
Vol 13 (4) ◽  
pp. 41-48
Author(s):  
Zheshu Ma ◽  
Zhenhuan Zhu

Indirectly or externally-fired gas-turbines (IFGT or EFGT) are novel technology under development for small and medium scale combined power and heat supplies in combination with micro gas turbine technologies mainly for the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass or 'dirty' fuel by employing a high temperature heat exchanger to avoid the combustion gases passing through the turbine. In this paper, by assuming that all fluid friction losses in the compressor and turbine are quantified by a corresponding isentropic efficiency and all global irreversibilities in the high temperature heat exchanger are taken into account by an effective efficiency, a one dimensional model including power output and cycle efficiency formulation is derived for a class of real IFGT cycles. To illustrate and analyze the effect of operational parameters on IFGT efficiency, detailed numerical analysis and figures are produced. The results summarized by figures show that IFGT cycles are most efficient under low compression ratio ranges (3.0-6.0) and fit for low power output circumstances integrating with micro gas turbine technology. The model derived can be used to analyze and forecast performance of real IFGT configurations.


2002 ◽  
Vol 122 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Kohei Ito ◽  
Katuyuki Hagiwara ◽  
Hiroyuki Nakaura ◽  
Kazuo Onda ◽  
Hidekazu Tanaka

2021 ◽  
Author(s):  
Thomas Krummrein ◽  
Martin Henke ◽  
Timo Lingstädt ◽  
Martina Hohloch ◽  
Peter Kutne

Abstract Micro gas turbines are a versatile platform for advanced cycle concepts. In these novel cycles, basic micro gas turbine components — compressor, turbine, combustor and recuperator — are coupled with various other technologies to achieve higher efficiency and flexibility. Examples are hybrid power plants integrating pressurized fuel cells, solar receivers or thermal storages. Characteristically, such complex cycles contain vast pressurized gas volumes between compressor and turbine, many times larger than those contained in conventional micro gas turbines. In fast deceleration maneuvers the rotational speed of the compressor drops rapidly. However, the pressure decrease is delayed due to the large amount of gas contained in the volumes. Ultimately, this can lead to compressor flow instability or surge. To predict and mitigate such instabilities, not only the compressor surge limit must be known, but also the dynamic dependencies between shaft speed deceleration, pressure and flow changes within the system. Since appropriate experiments may damage the system, investigations with numerical simulations are crucial. The investigation begins with a mathematical explanation of the relevant mechanisms, based on a simplified analytical model. Subsequently, the DLR in-house simulation program TMTSyS (Transient Modular Turbo-System Simulator) is used to investigate the impact of transient maneuvers on a micro gas turbine test rig containing a large pressurized gas volume in detail. After the relevant aspects of the simulation model are validated against measurement data, it is shown that the occurrence of compressor instabilities induced by fast deceleration can be predicted with the simulator. It is also shown that the simulation tool enables these predictions using only measurement data of non-critical maneuvers. Hence, mitigation strategies are derived that allow to estimate save shaft speed deceleration rate limits based on non-critical performance measurements.


2017 ◽  
Vol 24 (s1) ◽  
pp. 203-212 ◽  
Author(s):  
Jacek Rudnicki ◽  
Ryszard Zadrąg

Abstract This paper presents possible use of results of exhaust gas composition testing of self - ignition engine for technical state assessment of its charge exchange system under assumption that there is strong correlation between considered structure parameters and output signals in the form of concentration of toxic compounds (ZT) as well as unambiguous character of their changes. Concentration of the analyzed ZT may be hence considered to be symptoms of engine technical state. At given values of the signals and their estimates it is also possible to determine values of residues which may indicate a type of failure. Available tool programs aimed at analysis of experimental data commonly make use of multiple regression model which allows to investigate effects and interaction between model input quantities and one output variable. Application of multi-equation models provides great freedom during analysis of measurement data as it makes it possible to simultaneously analyze effects and interaction of many output variables. It may be also implemented as a tool for preparation of experimental material for other advanced diagnostic tools such as neural networks which, in contrast to multi-equation models, make it possible to recognize a state at multistate classification and - in consequence - to do diagnostic inference. Here , these authors present merits of application of the above mentioned analytical tools on the example of tests conducted on an experimental engine test stand.


Author(s):  
Savad A. Shakariyants ◽  
Jos P. van Buijtenen ◽  
Wilfried P. J. Visser ◽  
Alexander Tarasov

The paper illustrates an aero-engine exhaust emission study, which involves successive simulation procedures for aircraft flight, engine, combustor operation and exhaust emissions. It reveals a generic approach to analyze the effect of changes in flight conditions, power settings and combustor parameters on exhaust gas composition. Using reference measurement data at given engine operating points, pollutant models can be tuned to predict absolute concentration values at altered conditions. Emission formation processes were analyzed in the study using multi-reactor combustor models. The so-called principal pollutants of NOx, UHC, CO and soot were modeled over a broad range of engine power settings at static sea-level conditions. Modeling results were benchmarked against and tuned to emission certification data for a large commercial turbofan. CFD methods were employed to cross-check solution procedures for the engine combustor at the design operating point. Pollutants were also simulated in cruse conditions. Different flight conditions were considered using cross-linked engine and aircraft performance models.


Author(s):  
Yastuti Rao Gautam

Micro gas turbines are an auspicious technology for power generation because of their small size, low pollution, low maintenance, high reliability and natural fuel used. Recuperator is vital requirement in micro gas turbine unit for improve the efficiency of micro turbine unit . Heat transfer and pressure drop characteristics are important for designing an efficient recuperator. Recuperators preheat compressed air by transfer heat from exhaust gas of turbines, thus reducing fuel consumption and improving the thermal efficiency of micro gas turbine unit from 16–20% to 30%. The fundamental principles for optimization design of PSR are light weight, low pressure loss and high heat-transfer between exhaust gas to compressed air. There is many type of recuperator used in micro gas turbine like Annular CWPS recuperator , recuperator with involute-profile element , honey well , swiss-Roll etc . In this review paper is doing study of Heat transfer and pressure drop characteristics of many types recuperator.


Author(s):  
Homam Nikpey Somehsaraei ◽  
Mohammad Mansouri Majoumerd ◽  
Mohsen Assadi

As a renewable energy source, biogas produced from anaerobic digestion seems to play an important role in the energy market. Unlike wind and solar, which are intermittent, gas turbines fueled by biogas provide dispatchable renewable energy that can be ramped up and down to match the demand. If post-combustion carbon capture systems are implemented, they can also result in negative CO2 emissions. However, one of the major challenges here is the energy needed for CO2 chemical absorption in post-combustion capture, which is closely related to the concentration of CO2 in the exhaust gas upstream of the capture unit. This paper presents an evaluation of the effects of biogas and exhaust gas recirculation use on the performance of the gas turbine cycle for post-combustion CO2 capture application. The study is based on a combined heat and power micro gas turbine, Turbec T100, delivering 100kWe. The thermodynamic model of the gas turbine has been validated against experimental data obtained from test facilities in Norway and the United Kingdom. Based on the validated model, performance calculations for the baseline micro gas turbine (fueled by natural gas), biogas-fired cases and the cycle with exhaust gas recirculation have been carried out at various operational conditions and compared together. A wide range of biogas composition with varying methane content was assumed for this study. Necessary minor modifications to fuel valves and compressor were assumed to allow the engine operation with different biogas composition. The methodology and results are fully discussed in this paper.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung ◽  
Hsiao-Wei D. Chiang

Biodiesel is an environmentally benign renewable alternative for conventional diesel fuel, and its utilization in macro gas turbines (MGT) is an interesting option for many applications. The objective of this work is to develop a steady-state model to evaluate the performance of a micro gas turbine fueled by the blends of biodiesel and petrodiesel. The concentration of inlet biodiesel to the model was 10%, 20%, and 30%. In order to validate the developed model, the results of modelling work were compared against the experimental data obtained from a micro gas turbine experimental unit. The engine was modified by mounting various sensors to monitor and record system performance parameters, such as pressure, temperatures, and flow rates at various locations as well as output power, and ambient conditions. The results indicate that most parameters are influenced, to some degree, by changes in the fuel composition. This indicates that although most MGTs can be potentially operated by a high concentration of biodiesel blends, before this fuel switching can be implemented, the system operational parameters should be evaluated by the system modeling to predict possible negative impacts of biodiesel in the inlet fuel on the engine.


Author(s):  
Martin Henke ◽  
Nikolai Klempp ◽  
Martina Hohloch ◽  
Thomas Monz ◽  
Manfred Aigner

Micro gas turbines (MGT) provide a highly efficient, low-pollutant way to generate power and heat on-site. MGTs have also proven to be a versatile technology platform for recent developments like utilization of fuels with low specific heating values and solar thermal electricity generation. Moreover, they are the foundation to build novel cycles like the inverted Brayton cycle or fuel cell hybrid power plants. Numerical simulations of steady operation points are beneficial in various phases of MGT cycle development. They are used to determine and analyze the future potentials of innovative cycles for example by predicting the electrical efficiency and they support the thermodynamic design process (by providing mass flow, pressure and temperature data). Numerical Simulation allows to approximate off-design performance of known cycles e.g. power output at different ambient conditions. Additionally, numerical simulation is used to support cycle optimization efforts by analyzing the sensitivity of component performance on cycle performance. Numerical models of the MGT components have to be tuned and validated based on experimental data from MGT test rigs. At DLR institute of combustion technology a MGT steady-state cycle simulation tool has been used to analyze a variety of cycles and has been revised for several years. In this paper, the validation process is discussed in detail. Comparing simulation data with measurement data from the DLR Turbec T100 test rig has led to extensions of the numeric models, on the one hand, and to modifications of the test rig on the other. Newly implemented numerical models account for the generator heat release to the inlet air and the power electronic limitations. The test rig was modified to improve the temperature measurement at positions with uneven spatial temperature distribution such as the turbine outlet. Analyzing these temperature distributions also yields a possible explanation for the apparent strong recuperator efficiency drop at high load levels, which was also observed by other T100 users before.


Author(s):  
Jan Zanger ◽  
Thomas Monz ◽  
Manfred Aigner

To establish micro gas turbine (MGT) systems in a wide field of CHP applications, innovative combustion concepts are needed to meet the demands for low exhaust gas emissions, high efficiency and reliability as well as high fuel flexibility. A promising technology for future MGT combustion is the FLOX® concept. The goal of the presented work is to prove the feasibility of a double–staged, FLOX®–based MGT combustion system on a MGT test rig. The paper reports a reliable operating behavior of a Turbec T100 MGT in combination with the new FLOX®–based combustion chamber utilizing natural gas. The measured exhaust gas emissions are compared for different configurations of the combustion chamber and the standard Turbec system. It is shown that the carbon monoxide emissions are reduced whereas the nitrogen oxide emissions exceed the emission levels of the standard MGT burner. However, they still fall far below the German legal limits. For helping to interpret the results of the MGT combustion system, the double–staged combustor is compared to a single–staged FLOX®burner on basis of atmospheric measurements. Here, it is shown that the margin to lean blow–off is substantially increased by the fuel staging. Moreover, it is demonstrated that the exhaust gas emissions of the double–staged combustor could be kept at a similar very low level by applying the staging. Additionally, the overall reaction regions are reported by OH* chemiluminescence imaging as a function of burner air number. Based on this atmospheric study the transfer to MGT conditions is made and appropriate measures are derived to optimize the exhaust gas emissions of the MGT FLOX® combustion system.


Sign in / Sign up

Export Citation Format

Share Document