Two Phase Flow CFD Modeling of a Steam Turbine Low Pressure Section: Comparison With Data and Correlations

2021 ◽  
Author(s):  
Nicola Maceli ◽  
Lorenzo Arcangeli ◽  
Andrea Arnone

Abstract Testing a sub-component or testing a scaled model are the approaches currently used to reduce the development cost of the new low-pressure (LP) section of a steam turbine. In any case, testing campaigns are run at a limited number of operating conditions. Therefore, some correlations are used to build a performance model of the LP module and expand the usage of a limited set of experimental data to cover the application range encountered in the steam turbine market. Another approach, which has become feasible during the last decade, is the usage of CFD calculations. These two approaches include a certain amount of uncertainty in the performance of the LP section, mainly related to the losses caused by the moisture content in the flow. In the present paper, the results of the analysis of a cutting-edge low-pressure section for small steam turbines are presented. The results are obtained by using a CFD commercial code with a set of user defined subroutines to model the effects of droplets nucleation and growth. Different operating conditions are considered, with different wetness at the exit and different pressure ratios, in order to clearly show the loss trend for different levels of exit moisture. The numerical results are compared with the experimental data, showing a significant improvement in the performance predictability for the considered case and demonstrating the benefit of using a CFD approach instead of using existing correlations.

Author(s):  
M. Schatz ◽  
T. Eberle ◽  
M. Grübel ◽  
J. Starzmann ◽  
D. M. Vogt ◽  
...  

The correct computation of steam subcooling, subsequent formation of nuclei and finally droplet growth is the basic prerequisite for a quantitative assessment of the wetness losses incurred in steam turbines due to thermal and inertial relaxation. The same basically applies for the prediction of droplet deposition and the resulting threat of erosion. Despite the fact that there are many CFD-packages that can deal with real-gas effects in steam flows, the accurate and reliable prediction of subcooling, condensation and wet steam flow in steam turbines using CFD is still a demanding task. One reason for this is the lack of validation data for turbines that can be used to assess the physical models applied. Experimental data from nozzle and cascade tests can be found in the open literature; however, this data is only partly useful for validation purposes for a number of reasons. With regard to steam turbine test data, there are some publications, yet always without any information about the turbine stage geometries. This publication is part of a two-part paper; whereas part 1 focuses on the numerical validation of wet steam models by means of condensing nozzle and cascade flows, the focus in this part lies on the comparison of CFD results of the turbine flow to experimental data at various load conditions. In order to assess the validity and reliability of the experimental data, the method of measurement is presented in detail and discussed. The comparison of experimental and numerical results is used for a discussion about the challenges in both modeling and measuring steam turbine flows, presenting the current experience and knowledge at ITSM.


Author(s):  
Benjamin Megerle ◽  
Timothy Stephen Rice ◽  
Ivan McBean ◽  
Peter Ott

The diversification of power generation methods within existing power networks has increased the requirement for operational flexibility of plants employing steam turbines. This has led to the situation where steam turbines may operate at very low volume flow conditions for extended periods of time. Under operating conditions where the volume flow through the last stage moving blades (LSMBs) of a low-pressure (LP) steam turbine falls below a certain limit, energy is returned to the working fluid rather than being extracted. This so-called “ventilation” phenomenon produces nonsynchronous aerodynamic excitation, which has the potential to lead to high dynamic blade loading. The aerodynamic excitation is often the result of a rotating phenomenon, with similarities to a rotating stall, which is well known in compressors. Detailed unsteady pressure measurements have been performed in a single stage model steam turbine operated with air under ventilation conditions. The analysis revealed that the rotating excitation mechanism observed in operating steam turbines is reproduced in the model turbine. A 3D computational fluid dynamics (CFD) method has been applied to simulate the unsteady flow in the air model turbine. The numerical model consists of the single stage modeled as a full annulus, along with the axial-radial diffuser. An unsteady CFD analysis has been performed with sufficient rotor revolutions to obtain globally periodic flow. The simulation reproduces the main characteristics of the phenomenon observed in the tests. The detailed insight into the dynamic flow field reveals information on the nature of the excitation mechanism. The calculations further indicate that the LSMB tip clearance flow has little or no effect on the characteristics of the mechanism for the case studied.


Author(s):  
Peter Stein ◽  
Christoph Pfoster ◽  
Michael Sell ◽  
Paul Galpin ◽  
Thorsten Hansen

The diffuser and exhaust of low pressure steam turbines shows significant impact on the overall turbine performance. The amount of recovered enthalpy leads to a considerable increase of the turbine power output, and therefore a continuous focus of turbine manufacturers is put on this component. On the one hand, the abilities to aerodynamically design such components is improved, but on the other hand a huge effort is required to properly predict the resulting performance and to enable an accurate modeling of the overall steam turbine and therewith plant heat rate. A wide range of approaches is used to compute the diffuser and exhaust flow, with a wide range of quality. Today it is well known and understood, that there is a strong interaction of rear stage and diffuser flow, and the accuracy of the overall diffuser performance prediction strongly depends on a proper coupling of both domains. The most accurate, but also most expensive method is currently seen in a full annulus and transient coupling. However, for a standard industrial application of diffuser design in a standard development schedule, such a coupling is not feasible and more simplified methods have to be developed. The paper below presents a CFD modeling of low pressure steam turbine diffusers and exhausts based on a direct coupling of the rear stage and diffuser using a novel multiple mixing plane. It is shown that the approach enables a fast diffuser design process and is still able to accurately predict the flow field and hence the exhaust performance. The method is validated against several turbine designs measured in a scaled low pressure turbine model test rig using steam. The results show a very good agreement of the presented CFD modeling against the measurements.


Author(s):  
Lorenzo Cosi ◽  
Jonathon Slepski ◽  
Steven DeLessio ◽  
Michele Taviani ◽  
Amir Mujezinovic´

New low pressure (LP), stages for variable speed, mechanical drive and geared power generation steam turbines have been developed. The new blade and nozzle designs can be applied to a wide range of turbine rotational speeds and last stage blade annulus areas, thus forming a family of low pressure stages—High Speed (HS) blades and nozzles. Different family members are exact scales of each other and the tip speeds of the corresponding blades within the family are identical. Thus the aeromechanical and aerodynamic characteristics of the individual stages within the family are identical as well. Last stage blades and nozzles have been developed concurrently with the three upstream stages, creating optimised, reusable low pressure turbine sections. These blades represent a step forward in improving speed, mass flow capability, reliability and aerodynamic efficiency of the low pressure stages for the industrial steam turbines. These four stages are designed as a system using the most modern design tools applied on Power Generation and Aircraft Engines turbo-machineries. The aerodynamic performance of the last three stage of the newly designed group will be verified in a full-scale test facility. The last stage blade construction incorporates a three hooks, axial entry dovetail with improved load carrying capability over other blade attachment methods. The next to the last stage blade also uses a three hooks axial entry dovetail, while the two front stage blades employ internal tangential entry dovetails. The last and next to the last stage blades utilize continuous tip coupling via implementation of integral snubber cover while a Z-lock integral cover is employed for the two upstream stages. Low dynamic strains at all operating conditions (off and on resonance speeds) will be validated via steam turbine testing at realistic steam conditions (steam flows, temperatures and pressures). Low load, high condenser pressure operation will also be verified using a three stage test turbine operated in the actual steam conditions as well. In addition, resonance speed margins of the four stages have been verified through full-scale wheel box tests in the vacuum spin cell, thus allowing the application of these stages to Power Generation applications. Stator blades are produced with a manufacturing technology, which combines full milling and electro-discharge machining. This process allows machining of the blades from an integral disc, and thus improving uniformity of the throat distribution. Accuracy of the throat distribution is also improved when compared to the assembled or welded stator blade technology. This paper will discuss the aerodynamic and aeromechanical design, development and testing program completed for this new low pressure stages family.


Author(s):  
Ilias Bosdas ◽  
Michel Mansour ◽  
Anestis I. Kalfas ◽  
Reza S. Abhari ◽  
Shigeki Senoo

The largest share of electricity production worldwide belongs to steam turbines. However, the increase of renewable energy production has led steam turbines to operate under part load conditions and increase in size. As a consequence, long rotor blades will generate a relative supersonic flow field at the inlet of the last rotor. This paper presents a unique experiment work that focuses at the top 30% of stator exit in the last stage of an low pressure (LP) steam turbine test facility with coarse droplets and high wetness mass fraction under different operating conditions. The measurements were performed with two novel fast response probes: a fast response probe for three-dimensional flow field wet steam measurements and an optical backscatter probe for coarse water droplet measurements ranging from 30 μm up to 110 μm in diameter. This study has shown that the attached bow shock at the rotor leading edge is the main source of interblade row interactions between the stator and rotor of the last stage. In addition, the measurements showed that coarse droplets are present in the entire stator pitch with larger droplets located at the vicinity of the stator's suction side. Unsteady droplet measurements showed that the coarse water droplets are modulated with the downstream rotor blade-passing period. This set of time-resolved data will be used for in-house computational fluid dynamics (CFD) code development and validation.


Author(s):  
Juri Bellucci ◽  
Lorenzo Peruzzi ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
Nicola Maceli

Abstract This work aims to deepen the understanding of the aerodynamic behavior and the performance of a low pressure steam turbine module. Numerical and experimental results obtained on a three-stage low pressure steam turbine (LPT) module are presented. The selected geometry is representative of the state-of-the-art of low pressure sections for small steam turbines. The test vehicle was designed and operated in different operating conditions with dry and wet steam. Different types of measurements are performed for the global performance estimation of the whole turbine and for the detailed analysis of the flow field. Steady and unsteady CFD analyses have been performed by means of viscous, three-dimensional simulations adopting a real gas, equilibrium steam model. Measured inlet/outlet boundary conditions are used for the computations. The fidelity of the computational setup is proven by comparing computational and experimental results. Main performance curves and span-wise distributions show a good agreement in terms of both shape of curves/distributions and absolute values. Finally, an attempt is done to point out where losses are generated and the physical mechanisms involved are investigated and discussed in details.


Author(s):  
Benjamin Megerle ◽  
Timothy Stephen Rice ◽  
Ivan McBean ◽  
Peter Ott

The diversification of power generation methods within existing power networks has increased the requirement for operational flexibility of plants employing steam turbines. This has led to the situation where steam turbines may operate at very low volume flow conditions for extended periods of time. Under operating conditions where the volume flow through the last stage moving blades (LSMBs) of a low-pressure (LP) steam turbine falls below a certain limit, energy is returned to the working fluid rather than being extracted. This so-called “ventilation” phenomenon produces non-synchronous aerodynamic excitation, which has the potential to lead to high dynamic blade loading. The aerodynamic excitation is often the result of a rotating phenomenon, with similarities to rotating stall, which is well known in compressors. Detailed unsteady pressure measurements have been performed in a single stage model steam turbine operated with air under ventilation conditions. Detailed analysis revealed that the rotating excitation mechanism observed in operating steam turbines, is reproduced in the model turbine. 3D CFD has been applied to simulate the unsteady flow in the air model turbine. The numerical model consists of the single stage modeled as a full annulus, as well as the axial-radial diffuser. An unsteady CFD analysis has been performed for sufficient rotor revolutions such that the flow is globally periodic. It has been shown that the simulation reproduces well the characteristics of the phenomenon observed in the tests. The detailed insight into the flow field allows the drawing of conclusions as to the nature of the excitation mechanism. One result is that the LSMB tip clearance flow is found to have very little or no effect on the characteristics of mechanism for the case studied.


Author(s):  
Dickson Munyoki ◽  
Markus Schatz ◽  
Damian M. Vogt

The performance of the axial-radial diffuser downstream of the last low-pressure steam turbine stages and the losses occurring subsequently within the exhaust hood directly influences the overall efficiency of a steam power plant. It is estimated that an improvement of the pressure recovery in the diffuser and exhaust hood by 10% translates into 1% of last stage efficiency [11]. While the design of axial-radial diffusers has been the object of quite many studies, the flow phenomena occurring within the exhaust hood have not received much attention in recent years. However, major losses occur due to dissipation within vortices and inability of the hood to properly diffuse the flow. Flow turning from radial to downward flow towards the condenser, especially at the upper part of the hood is essentially the main cause for this. This paper presents a detailed analysis of the losses within the exhaust hood flow for two operating conditions based on numerical results. In order to identify the underlying mechanisms and the locations where dissipation mainly occurs, an approach was followed, whereby the diffuser inflow is divided into different sectors and pressure recovery, dissipation and finally residual kinetic energy of the flow originating from these sectors is calculated at different locations within the hood. Based on this method, the flow from the topmost sectors at the diffuser inlet is found to cause the highest dissipation for both investigated cases. Upon hitting the exhaust hood walls, the flow on the upper part of the diffuser is deflected, forming complex vortices which are stretching into the condenser and interacting with flow originating from other sectors, thereby causing further swirling and generating additional losses. The detailed study of the flow behavior in the exhaust hood and the associated dissipation presents an opportunity for future investigations of efficient geometrical features to be introduced within the hood to improve the flow and hence the overall pressure recovery coefficient.


Author(s):  
Tom Verstraete ◽  
Johan Prinsier ◽  
Alberto Di Sante ◽  
Stefania Della Gatta ◽  
Lorenzo Cosi

The design of the radial exhaust hood of a low pressure (LP) steam turbine has a strong impact on the overall performance of the LP turbine. A higher pressure recovery of the diffuser will lead to a substantial higher power output of the turbine. One of the most critical aspects in the diffuser design is the steam guide, which guides the flow near the shroud from axial to radial direction and has a high impact on the pressure recovery. This paper presents a method for the design optimization of the steam guide of a steam turbine for industrial power generation and mechanical drive of centrifugal compressors. This development is in the frame of a continuous effort in GE Oil and Gas to develop more efficient steam turbines. An existing baseline exhaust and steam guide design is first analyzed together with the last LP turbine stage with a frozen rotor full 3D Computational Fluid Dynamics (CFD) calculation. The numerical prediction is compared to available steam test turbine data. The new exhaust box and a first attempt new steam guide design are then first analyzed by a CFD computation. The diffuser inlet boundary conditions are extracted from this simulation and used for improving the design of the steam guide. The maximization of the pressure recovery is achieved by means of a numerical optimization method that uses a metamodel assisted differential evolution algorithm in combination with a 3D CFD solver. The profile of the steam guide is parameterized by a Bezier curve. This allows for a wide variety of shapes, respecting the manufacturability constraints of the design. In the design phase it is mandatory to achieve accurate results in terms of performance differences in a reasonable time. The pressure recovery coefficient is therefore computed through the 3D CFD solver excluding the last stage, to reduce the computational burden. Steam tables are used for the accurate prediction of the steam properties. Finally, the optimized design is analyzed by a frozen rotor computation to validate the approach. Also off-design characteristics of the optimized diffuser are shown.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Arne Graßmann

In order to meet the requirements of rising energy demand, one goal in the design process of modern steam turbines is to achieve high efficiencies. A major gain in efficiency is expected from the optimization of the last stage and the subsequent diffuser of a low pressure turbine (LP). The aim of such optimization is to minimize the losses due to separations or inefficient blade or diffuser design. In the usual design process, as is state of the art in the industry, the last stage of the LP and the diffuser is designed and optimized sequentially. The potential physical coupling effects are not considered. Therefore the aim of this paper is to perform both a sequential and coupled optimization of a low pressure steam turbine followed by an axial radial diffuser and subsequently to compare results. In addition to the flow simulation, mechanical and modal analysis is also carried out in order to satisfy the constraints regarding the natural frequencies and stresses. This permits the use of a meta-model, which allows very time efficient three dimensional (3D) calculations to account for all flow field effects.


Sign in / Sign up

Export Citation Format

Share Document