Numerical Studies on the Effect of Gurney Flap on Aerodynamic Performance and Stall Margin of a Transonic Axial Compressor Rotor

Author(s):  
Mudassir Ahmed M. Rafeeq ◽  
Quamber H. Nagpurwala ◽  
Subbaramu Shivaramaiah

Numerical studies have been carried out on the effectiveness of trailing edge Gurney flap on a transonic axial compressor rotor. The baseline geometry of the rotor blade was modified at the trailing edge by introducing Gurney flaps of varying depth and span-wise length, viz. 1 mm, 2 mm and 3 mm depth with 20% span length of Gurney flap from tip (designated as GF1-20, GF2-20 and GF3-20 respectively), and 1 mm depth with 50% and 100% span length (designated as GF1-50 and GF1-100 respectively). Geometric models of the compressor rotor without and with Gurney flaps were generated using CATIA V5 software and CFD simulations at 100% design rotor speed were carried out using ANSYS CFX software. Results have shown that the compressor total pressure ratio increased with increase in both depth and spanwise length of Gurney flap. Peak pressure ratio increased from 1.51 for baseline case to 1.58 for rotor GF1-100. However, the peak isentropic efficiency remained almost constant for various Gurney flap configurations, except for GF1-100 which showed a tendency for improvement in efficiency. The stall margin reduced with the introduction of Gurney flap and was lowest for configuration GF1-100 which gave highest peak pressure ratio. Higher blade loading with Gurney flap was responsible for lowering the stall margin. Analysis of the flow through the blade passages has shown clear formation of trailing end vortex structure in the presence of Gurney flap that resulted in bending of the streamlines towards suction surface of the rotor blade, with consequent reduction in flow deviation and increased flow deflection, and hence increased total pressure ratio.

Author(s):  
S. Subbaramu ◽  
Quamber H. Nagpurwala ◽  
A. T. Sriram

This paper deals with the numerical investigations on the effect of trailing edge crenulation on the performance of a transonic axial compressor rotor. Crenulation is broadly considered as a series of small notches or slots at the edge of a thin object, like a plate. Incorporating such notches at the trailing edge of a compressor cascade has shown beneficial effect in terms of reduction in total pressure loss due to enhanced mixing in the wake region. These notches act as vortex generators to produce counter rotating vortices, which increase intermixing between the free stream flow and the low momentum wake fluid. Considering the positive effects of crenulation in a cascade, it was hypothesized that the same technique would work in a rotating compressor to enhance its performance and stall margin. However, the present CFD simulations on a transonic compressor rotor have given mixed results. Whereas the peak total pressure ratio in the presence of trailing edge crenulation reduced, the stall margin improved by 2.97% compared to the rotor with straight edge blades. The vortex generation at the crenulated trailing edge was not as strong as reported in case of linear compressor cascade, but it was able to influence the flow field in the rotor tip region so as to energize the low momentum end-wall flow in the aft part of the blade passage. This beneficial effect delayed flow separation and allowed the mass flow rate to be reduced to still lower levels resulting in improved stall margin. The reduction in pressure ratio with crenulation was surprising and might be due to increased mixing losses downstream of the blade.


Author(s):  
Song Huang ◽  
Chuangxin Zhou ◽  
Chengwu Yang ◽  
Shengfeng Zhao ◽  
Mingyang Wang ◽  
...  

Abstract As a degree of freedom in the three-dimensional blade design of axial compressors, the sweep technique significantly affects the aerodynamic performance of axial compressors. In this paper, the effects of backward sweep rotor configurations on the aerodynamic performance of a 1.5-stage highly loaded axial compressor at different rotational design speeds are studied by numerical simulation. The aim of this work is to improve understanding of the flow mechanism of backward sweep on the aerodynamic performance of a highly loaded axial compressor. A commercial CFD package is employed for flow simulations and analysis. The study found that at the design rotational speed, compared with baseline, backward sweep rotor configurations reduce the blade loading near the leading edge but slightly increases the blade loading near the trailing edge in the hub region. As the degree of backward sweep increases, the stall margin of the 1.5-stage axial compressor increase first and then decrease. Among different backward sweep rotor configurations, the 10% backward sweep rotor configuration has the highest stall margin, which is about 2.5% higher than that of baseline. This is due to the change of downstream stator incidence, which improves flow capacity near the hub region. At 80% rotational design speed, backward sweep rotor configurations improve stall margin and total pressure ratio of the compressor. It’s mainly due to the decreases of the rotor incidence near the middle span, which results in the decreases of separation on the suction surface. At 60% rotational design speed, detached shock disappears. Backward sweep rotor configurations deteriorate stall margin of the compressor, but increase total pressure ratio and adiabatic efficiency when the flow rate is lower than that at peak efficiency condition. Therefore, it’s necessary to consider the flow field structure of axial compressors at whole operating conditions in the design process and use the design freedom of sweep to improve the aerodynamic performance.


Author(s):  
Yuyun Li ◽  
Zhiheng Wang ◽  
Guang Xi

The Inlet distortion, which may lead to the stability reduction or structure failure, is often non-ignorable in an axial compressor. In the paper, the three-dimensional unsteady numerical simulations on the flow in NASA rotor 67 are carried out to investigate the effect of inlet distortion on the performance and flow structure in a transonic axial compressor rotor. A sinusoidal circumferential total pressure distortion with eleven periods per revolution is adopted to study the interaction between the transonic rotor and inlet circumferential distortion. Concerning the computational expense, the flow in two rotor blade passages is calculated. Various intensities of the total pressure distortion are discussed, and the detailed flow structures under different rotating speeds near the peak efficiency condition are analyzed. It is found that the distortion has a positive effect on the flow near the hub. Even though there is no apparent decrease in the rotor efficiency or total pressure ratio, an obvious periodic loading exists over the whole blade. The blade loadings are concentrated in the region near the leading edge of the rotor blade or regions affected by the oscillating shocks near the pressure side. The time averaged location of shock structure changes little with the distortion, and the motion of shocks and the interactions between the shock and the boundary layer make a great contribution to the instability of the blade structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Cui Cui ◽  
Zhenggui Zhou ◽  
Endor Liu

Supersonic compressors have a high wheel speed and operational capability, which facilitate a high stage pressure ratio. However, the strong shock waves in the passage of a supersonic rotor and the interference between shock waves and boundary layers can lead to large flow loss and low efficiency. Moreover, the existing design of a high-load supersonic compressor has the problem of small stall margin. In this study, an automatic optimization method including 2D profile optimization and 3D blade optimization is proposed to achieve a high efficiency at the design point of a supersonic compressor rotor under the premise of reaching the desired mass flow rate and total pressure ratio. According to the analysis of flow near the stall point of the supersonic compressor rotor, the mechanism responsible for rotor tip stall is established, that is, the aerodynamic throat appeared inside the flow passage, reducing the ability of the blade tip to withstand back pressure, and the low-speed areas caused by the tip-leakage-vortex breakage and boundary layer separation reduced the flow capacity of the blade tip. Based on the reasons for rotor stall, three methods are proposed to improve the stall margin, which include increasing the exit radius of the upper meridian, forward sweep of the blade tip, and increasing the chord length of the blade tip. The above method is used to design a supersonic rotor with a total pressure ratio of 2.8, which exhibits an efficiency of 0.902 at the design point and a stall margin of 18.11%.


2017 ◽  
Vol 0 (0) ◽  
Author(s):  
C. T. Dinh ◽  
K. Y. Kim

AbstractThis paper presents a performance evaluation of non-axisymmetric casing grooves combined with airflow injection in a transonic axial compressor with NASA Rotor 37, using three-dimensional Reynolds-averaged Navier-Stokes equations with the k-ε turbulence model. An axisymmetric casing groove was divided circumferentially into 36 non-axisymmetric grooves. The numerical results for adiabatic efficiency and total pressure ratio were validated with experimental data. A parametric study for stall margin, stable range extension, peak adiabatic efficiency, and total pressure ratio at peak adiabatic efficiency of the compressor was performed using five parameters: the front and rear lengths, the height of the casing groove, the injection mass flow rate, and the injection angle. The non-axisymmetric casing grooves combined with injection improve greatly the stall margin and stable range extension of the transonic axial compressor, but reduce only slightly the peak adiabatic efficiency in all cases, compared to the results for a smooth casing.


Author(s):  
Guoming Zhu ◽  
Xiaolan Liu ◽  
Bo Yang ◽  
Moru Song

Abstract The rotating distortion generated by upstream wakes or low speed flow cells is a kind of phenomenon in the inlet of middle and rear stages of an axial compressor. Highly complex inflow can obviously affect the performance and the stability of these stages, and is needed to be considered during compressor design. In this paper, a series of unsteady computational fluid dynamics (CFD) simulations is conducted based on a model of an 1-1/2 stage axial compressor to investigate the effects of the distorted inflows near the casing on the compressor performance and the clearance flow. Detailed analysis of the flow field has been performed and interesting results are concluded. The distortions, such as total pressure distortion in circumferential and radial directions, can block the tip region so that the separation loss and the mixing loss in this area are increased, and the efficiency and the total pressure ratio are dropped correspondingly. Besides, the distortions can change the static pressure distribution near the leading edge of the rotor, and make the clearance flow spill out of the rotor edge more easily under near stall condition, especially in the cases with co-rotating distortions. This phenomenon can be used to explain why the stall margin is deteriorated with nonuniform inflows.


Author(s):  
Zijing Chen ◽  
Bo Liu ◽  
Xiaoxiong Wu

Abstract In order to further improve the effectiveness of design(inverse) issue of S2 surface of axial compressor, a design method of optimization model based on real-coded genetic algorithm is instructed, with a detailed description of some important points such as the population setting, the fitness function design and the implementation of genetic operator. The method mainly takes the pressure ratio, the circulation as the optimization variables, the total pressure ratio and the overall efficiency of the compressor as the constraint condition and the decreasing of the diffusion factor of the compressor as the optimization target. In addition, for the propose of controlling the peak value of some local data after the optimization, a local optimization strategy is proposed to make the method achieve better results. In the optimization, the streamline curvature method is used to perform the iterative calculation of the aerodynamic parameters of the S2 flow surface, and the polynomial fitting method is used to optimize the dimensionality of the variables. The optimization result of a type of ten-stage axial compressor shows that the pressure ratio and circulation parameters have significant effect on the diffusion factor’s distribution, especially for the rotor pressure ratio. Through the optimization, the smoothness of the mass-average pressure ratio distribution curve of the rotors at all stages of the compressor is improved. The maximum diffusion factors in spanwise of rotor rows at the first, fifth and tenth stage of the compressor are reduced by 1.46%, 12.53% and 8.67%, respectively. Excluding the two calculation points at the root and tip of the blade because of the peak value, the average diffusion factors in spanwise are reduced by 1.28%, 3.46%, and 1.50%, respectively. For the two main constraints, the changes of the total pressure ratio and overall efficiency are less than 0.03% and 0.032%, respectively. In the end, a 3-d CFD numerical result is given to testify the effects of the optimization, which shows that the loss in the compressor is decreased by the optimization algorithm.


Author(s):  
Jan Siemann ◽  
Ingolf Krenz ◽  
Joerg R. Seume

Reducing the fuel consumption is a main objective in the development of modern aircraft engines. Focusing on aircraft for mid-range flight distances, a significant potential to increase the engines overall efficiency at off-design conditions exists in reducing secondary flow losses of the compressor. For this purpose, Active Flow Control (AFC) by aspiration or injection of fluid at near wall regions is a promising approach. To experimentally investigate the aerodynamic benefits of AFC by aspiration, a 4½-stage high-speed axial-compressor at the Leibniz Universitaet Hannover was equipped with one AFC stator row. The numerical design of the AFC-stator showed significant hub corner separations in the first and second stator for the reference configuration at the 80% part-load speed-line near stall. Through the application of aspiration at the first stator, the numerical simulations predict the complete suppression of the corner separation not only in the first, but also in the second stator. This leads to a relative increase in overall isentropic efficiency of 1.47% and in overall total pressure ratio of 4.16% compared to the reference configuration. To put aspiration into practice, the high-speed axial-compressor was then equipped with a secondary air system and the AFC stator row in the first stage. All experiments with AFC were performed for a relative aspiration mass flow of less than 0.5% of the main flow. Besides the part-load speed-lines of 55% and 80%, the flow field downstream of each blade row was measured at the AFC design point. Experimental results are in good agreement with the numerical predictions. The use of AFC leads to an increase in operating range at the 55% part-load speed-line of at least 19%, whereas at the 80% part-load speed-line no extension of operating range occurs. Both speed-lines, however, do show a gain in total pressure ratio and isentropic efficiency for the AFC configuration compared to the reference configuration. Compared to the AFC design point, the isentropic efficiency ηis rises by 1.45%, whereas the total pressure ratio Πtot increases by 1.47%. The analysis of local flow field data shows that the hub corner separation in the first stator is reduced by aspiration, whereas in the second stator the hub corner separation slightly increases. The application of AFC in the first stage further changes the stage loading in all downstream stages. While the first and third stage become unloaded by application of AFC, the loading in terms of the De-Haller number increases in the second and especially in the fourth stage. Furthermore, in the reference as well as in the AFC configuration, the fourth stator performs significantly better than predicted by numerical results.


Author(s):  
Ali A. Merchant ◽  
Mark Drela ◽  
Jack L. Kerrebrock ◽  
John J. Adamczyk ◽  
Mark Celestina

The pressure ratio of axial compressor stages can be significantly increased by controlling the development of blade and endwall boundary layers in regions of adverse pressure gradient by means of boundary layer suction. This concept is validated and demonstrated through the design and analysis of a unique aspirated compressor stage which achieves a total pressure ratio of 3.5 at a tip speed of 1500 ft/s. The aspirated stage was designed using an axisymmetric through-flow code coupled with a quasi three-dimensional cascade plane code with inverse design capability. Validation of the completed design was carried out with three-dimensional Navier-Stokes calculations. Spanwise slots were used on the rotor and stator suction surfaces to bleed the boundary layer with a total suction requirement of 4% of the inlet mass flow. Additional bleed of 3% was also required on the hub and shroud near shock impingement locations. A three-dimensional viscous evaluation of the design showed good agreement with the quasi three-dimensional design intent, except in the endwall regions. The three-dimensional viscous analysis predicted a mass averaged total pressure ratio of 3.7 at an isentropic efficiency of 93% for the rotor, and a mass averaged total pressure ratio of 3.4 at an isentropic efficiency of 86% for the stage.


1980 ◽  
Vol 102 (4) ◽  
pp. 883-889 ◽  
Author(s):  
P. W. McDonald ◽  
C. R. Bolt ◽  
R. J. Dunker ◽  
H. B. Weyer

The flow field within the rotor of a transonic axial compressor has been computed and compared to measurements obtained with an advanced laser velocimeter. The compressor was designed for a total pressure ratio of 1.51 at a relative tip Mach number of 1.4. The comparisons are made at 100 percent design speed (20,260 RPM) with pressure ratios corresponding to peak efficiency, near surge, and wide open discharge operating conditions. The computational procedure iterates between a blade-to-blade calculation and an intrablade through flow calculation. Calculated Mach number contours, surface pressure distributions, and exit total pressure profiles are in agreement with the experimental data demonstrating the usefulness of quasi three-dimensional calculations in compressor design.


Sign in / Sign up

Export Citation Format

Share Document