Numerical Investigation to Assess the Performance of Free Rotating Vaneless Diffuser for a Centrifugal Compressor Stage

Author(s):  
Seralathan Sivamani ◽  
Roychowdhury Dibyakanti Ghosh

Numerical investigation is carried out on a low-pressure ratio centrifugal compressor stage to study the effects of the rotational speed of a rotating vaneless diffuser on flow diffusion using various flow parameters and performance characteristics parameters. The results obtained are compared with a stage having conventional stationary vaneless diffuser. Rotational speed of the rotating vaneless diffuser plays a major role in determining the extent of net gain in energy level of the fluid and drop in stagnation pressure losses. The net gain in energy level result as rise in kinetic energy level of the fluid. By an effective diffusion process, this results into an improved static pressure and stagnation pressure distribution at stage exit and FreeRVDSR0.75 undergoes a comparatively better diffusion process. Based on this study, it can be concluded that the diffusion process efficacy of a compressor stage with rotating vaneless diffuser is better in the free type at diffuser’s rotational speed above 0.50 times the impeller’s rotational speed.

Author(s):  
T Sato ◽  
J M Oh ◽  
A Engeda

As user demands grew for improved performance and more reliable equipment and as compressor vendors sought improved analytical and design methodologies, the application of computational fluid dynamics (CFD) in the industrial world became a necessity. Fortunately, large increases in available, economic computing power together with development of improved computational methods now provide the industrial designer with much improved analytic capability. As CFD algorithms and software have continued to be developed and refined, it remains essential that validation studies be conducted in order to ensure that the results are both sufficiently accurate and can be obtained in a robust and predictable manner. Part I of this paper presented detailed flow measurements in a vaneless diffuser of a centrifugal compressor stage with a very high flow coefficient radial impeller, where measurements were carried out in the vaneless diffuser at seven radial positions downstream of the radial impeller designed for a very high flow coefficient of ϕ = 0.2. This paper, Part II, attempts to verify and validate the results numerically.


Author(s):  
Seralathan Sivamani ◽  
Roy Chowdhury Dibyakanti Ghosh

In order to reduce the energy losses associated due to diffusion in the centrifugal compressor stage, several radial diffuser designs have been tried and rotating vaneless diffuser is one among them. Forced rotating vaneless diffuser is formed by extending the impeller disks alone beyond the blade tip without affecting the blade tip geometry. Studies on completely replacing a stationary vaneless diffuser with rotating vaneless diffuser are not available in open domain yet. This paper reports the effect of rotating vaneless diffuser based on shroud extension concept on flow diffusion, performance and flow parameters in a centrifugal compressor stage at design and off-design flow conditions. A backward curved impeller with diffuser diameter ratio 1.40 is chosen for the present study. Rotating vaneless diffuser is formed by extending the impeller disks by 40% above the impeller exit diameter. The comparative studies are done with the same impeller having a stationary vaneless diffuser of equivalent diffuser diameter ratio in the downstream. Static pressure rise in RVD-ES configuration is higher compared to SVD and the energy coefficient improved by around 57.14% for RVD-ES over the entire flow range. The efficiency of RVD-ES and SVD are almost identical at Φ = 0.156. At design and other off-design flow coefficients, the efficiencies of RVD-ES are slightly lesser compared to SVD by 1.0 to 1.52%. The static pressure recovery coefficient of RVD-ES is higher than SVD. The stagnation pressure losses reduced drastically for RVD-ES. From the velocity vectors and contours of stagnation pressure distribution, it seen that additional energy is added to the fluid by the rotating walls of the vaneless diffuser. This results in increased kinetic energy of the fluid. Due to better diffusion process in RVD-ES, this results with a gain in increased static pressure rise with acceptable efficiency.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Robert Kunte ◽  
Philipp Schwarz ◽  
Benjamin Wilkosz ◽  
Peter Jeschke ◽  
Caitlin Smythe

The subject of this paper is the experimental and numerical investigation of a state-of-the-art high pressure centrifugal compressor stage with pipe diffuser for a jet engine application. This study shows the impact of impeller tip clearance- and bleed-variation on the centrifugal stage. The purpose of this paper is threefold. In the first place, it investigates the effects on the stage performance. Secondly, it seeks to explain local flow-phenomena, especially in the diffuser. Finally, it shows that steady CFD simulations are capable of predicting these phenomena. Experimental data were gathered using conventional pitot and three-hole-probes as well as particle-image-velocimetry. Numerical simulations with the CFD solver TRACE were conducted to get fundamental insight into the flow. Thus, this study contributes greatly towards understanding the principle of the flow phenomena in the pipe diffuser of a centrifugal compressor.


2014 ◽  
Vol 23 (6) ◽  
pp. 523-534
Author(s):  
Syed Noman Danish ◽  
Shafiq Rehman Qureshi ◽  
Abdelrahman EL-Leathy ◽  
Salah Ud-Din Khan ◽  
Usama Umer ◽  
...  

Author(s):  
Prasad Mukkavilli ◽  
G. Rama Raju ◽  
A. Dasgupta ◽  
G. V. Ramana Murty ◽  
K. V. Jagadeshwar Chary

Diffusers are found to play a significant role in the performance of centrifugal compressors. Extensive studies have been in progress in various research laboratories for improvement of performance with various types of diffusers. One such effort for study of performance of a centrifugal compressor stage with Low Solidity Diffuser (LSD) vanes is presented in this paper. The study was conducted at a tip mach number of 0.35. An exclusive test rig was set up for carrying out these flow studies. The LSD vane is formed using standard NACA profile with marginal modification at the trailing edge region. The study encompasses the variation of setting angle of the LSD vane and the vane solidity. The effect of solidity and the setting angle on overall stage performance is evaluated in terms of flow coefficient, head coefficient and efficiency normalised with respect to these parameters for the case of vaneless diffuser at design flow. Improvement in performance as well as static pressure recovery was observed with LSD as compared to vaneless diffuser configuration. It is concluded from these studies that there is an optimum solidity and stagger angle for the given stage with LSD vanes for the chosen configuration.


Author(s):  
James M. Sorokes ◽  
Jason A. Kopko

The paper addresses the use of a rib style (partial height) vaned diffuser to improve the flowfield downstream of a high flow coefficient centrifugal impeller. Empirical and analytical (3-D CFD) results are presented for both the original vaneless diffuser and the replacement rib configuration. Comparisons are made between the CFD results and the data obtained through single stage rig (SSTR) testing. Comments are offered regarding the qualitative and quantitative agreement between the empirical and analytical results.


Author(s):  
T Sato ◽  
J M Oh ◽  
A Engeda

The flow in a radial vaneless diffuser downstream of a centrifugal compressor is highly complex, as the flow is turbulent, unsteady, viscous, and three-dimensional. Depending on the initial state of the end-wall boundary layers and the diffuser length, the flow may become fully developed or may separate from one of the walls. Therefore, to improve the diffuser performance, it is important to understand the flow field in the diffuser in detail. As the diffuser width is generally very small for most radial stages and an adverse pressure gradient exists, secondary flows are generated, making the flow fields more complicated. In addition, skewed boundary layers form on the wall surfaces. As flowrate is reduced, the flow field becomes more complicated and leads to rotating stall. This article presents detailed flow measurements in a vaneless diffuser of a centrifugal compressor stage with a very high flow coefficient radial impeller. Usually, centrifugal compressors with radial impellers are designed in the flow coefficient (ϕ) range ϕ = 0.01 - 0.16. Often, the need arises to design higher flow coefficient, ϕ, radial stages. Detailed measurements were carried out in the vaneless diffuser at seven radial positions downstream of a radial impeller designed for a very high flow coefficient of ϕ = 0.2. The experimental investigation was carried at four rotational speeds 13 000, 15 500, 18 000, and 20 500 r/min, but only the result of 20 500 r/min at near-design-point flowrate (5.11 kg/s) is reported in this article.


Author(s):  
Kishore Ramakrishnan ◽  
Simon K. Richards ◽  
Franc¸ois Moyroud ◽  
Vittorio Michelassi

Previous experimental and CFD investigation of a GE Oil and Gas centrifugal compressor stage with a vaneless diffuser revealed a complex excitation mechanism caused by an aero-acoustic interaction between three blade rows. In stages with vaned diffusers, additional sources of aeromechanical excitation on the impeller can be expected. This unsteady CFD investigation is a follow-up from the previous vaneless diffuser study to identify any additional sources of excitation that arise in the presence of a vaned diffuser in preparation for aeromechanic tests to be conducted later. The study confirms that excitation from impeller-diffuser interaction generated acoustic modes can dominate the potential field excitation from the diffuser vanes. In addition, a significant aero-acoustic excitation to the impeller at a vane pass frequency corresponding to the sum of the vane counts in the two downstream vane rows is observed, and its origination is discussed. The latter excitation is different from that observed in the vaneless diffuser stage where the vane pass frequency observed by the impeller corresponds to the sum of the vane counts in the upstream and downstream vane rows.


Sign in / Sign up

Export Citation Format

Share Document