Evaluation of Human Thermal Comfort in Offices in Kuwait and Assessment of the Applicability of the Standard PMV Model

Volume 1 ◽  
2004 ◽  
Author(s):  
Nawaf Al-Mutawa ◽  
Walid Chakroun ◽  
Mohammad H. Hosni

It has been known that the human thermal comfort is not exclusively a function of air temperature but also a function of six additional parameters, namely, mean radiant temperature, air velocity, turbulence intensity, humidity, activity level, and clothing insulation. The combined physical and psychological impact of these parameters on thermal comfort is mathematically described in various comfort models. The current comfort models, while use extensive human comfort data, may not be applicable in all world regions due to environmental conditions and people’s expectations. The State of Kuwait has a population of 2.5 million inhabitants with majority of people living in a few populated cities with heavy vehicle traffic, office buildings, factories, petroleum operations, and shopping centers. During the summer months (especially in July and August) the temperature reaches 48 °C in the afternoon, and can sometimes exceed 55 °C requiring extensive use of air conditioning. The traditional clothing (Disdasha) is made of lightweight, white, fabric material to provide some level of comfort. To better understand the regional preferences and assess the applicability of the standard comfort models in Kuwait, important parameters influencing human thermal comfort were measured in ten different government offices and the corresponding PMV indices were calculated. The results were compared with other comfort indices to obtain the most viable comfort index and the appropriate temperature range for local comfort for Kuwait offices. This study is not only important for comfort evaluations but also for evaluation of energy consumption in office buildings.

2008 ◽  
Author(s):  
Mohamad Al-Othmani ◽  
Nesreen Ghaddar ◽  
Kamel Ghali

In this work, human transient thermal responses and comfort are studied in non-uniform radiant heating and convective heating environments. The focus was on a change from walking activity of human in outdoor cold environment at high clothing insulation to warm indoor environment at sedentary activity level associated with lower clothing insulation. A transient multi-segmented bioheat model sensitive to radiant asymmetry is used to compare how fast the human body approaches steady state thermal conditions in both radiative and convective warm environments. A space thermal model is integrated with the bioheat model to predict the transient changes in skin and core temperature of a person subject to change in metabolic rate and clothing insulation when entering conditioned indoor space. It was found that overall thermal comfort and neutrality were reached in 6.2 minutes in the radiative environment compared to 9.24 minutes in convective environment. The local thermal comfort of various body segments differed in their response to the convective system where it took more than 19 minutes for extremities to reach local comfort unlike the radiative system where thermal comfort was attained within 7 minutes.


2019 ◽  
Author(s):  
Dominik Fröhlich ◽  
Andreas Matzarakis

Abstract. In the frame of the project MOSAIK – Model–based city planning and application in climate change, a German-wide research project within the call Urban Climate Under Change ([UC]2) funded by the German Federal Ministry of Education and Research (BMBF), a biometeorology module was implemented into the PALM model system. The new biometeorology module comprises of methods for the calculation of uv-exposure quantities, a human–biometeorologically weighted mean radiant temperature (Tmrt), as well as for the estimation of human thermal comfort or stress. The latter is achieved through the implementation of the three widely–used thermal indices Perceived Temperature (PT), Universal Thermal Climate Index (UTCI), as well as Physiologically Equivalent Temperature (PET) together with a newly developed instationary index instationary Perceived Temperature (iPT) based on PT for use with the multi–agent model. Comparison calculations were performed for the indices PT, UTCI and PET based on the SkyHelios model and showing PALM calculates higher values in general. This is mostly due to a higher radiational gain leading to higher values of mean radiant temperature. For a more direct comparison, the indices PT, PET and UTCI were calculated by the biometeorology module, as well as the programs provided by the attachment to the VDI guideline 3787, as well as by the RayMan model based on the very same input dataset. Results show deviations below rounding precision (less than 0.1 K) for PET and UTCI and some deviations of up to 2.683 K for PT caused by rounding leading to the selection of a different clothing insulation step in very rare cases (0.027 %).


2011 ◽  
Vol 243-249 ◽  
pp. 4905-4908
Author(s):  
Xue Min Sui ◽  
Xu Zhang ◽  
Guang Hui Han

Relative humidity is an important micro-climate parameter in radiant cooling environment. Based on the human thermal comfort model, this paper studied the effect on PMV index of relative humidity, and studied the relationship of low mean radiant temperature and relative humidity, drew the appropriate design range of indoor relative humidity for radiant cooling systems.The results show that high relative humidity can compensate for the impact on thermal comfort of low mean radiant temperature, on the premise of achieving the same thermal comfort requirements. However, because of the limited compensation range of relative humidity, together with the constraints for it due to anti-condensation of radiant terminal devices, the design range of relative humidity should not be improved, and it can still use the traditional air-conditioning design standards.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 619
Author(s):  
Jinsong Liu ◽  
Isak Worre Foged ◽  
Thomas B. Moeslund

Satisfactory indoor thermal environments can improve working efficiencies of office staff. To build such satisfactory indoor microclimates, individual thermal comfort assessment is important, for which personal clothing insulation rate (Icl) and metabolic rate (M) need to be estimated dynamically. Therefore, this paper proposes a vision-based method. Specifically, a human tracking-by-detection framework is implemented to acquire each person’s clothing status (short-sleeved, long-sleeved), key posture (sitting, standing), and bounding box information simultaneously. The clothing status together with a key body points detector locate the person’s skin region and clothes region, allowing the measurement of skin temperature (Ts) and clothes temperature (Tc), and realizing the calculation of Icl from Ts and Tc. The key posture and the bounding box change across time can category the person’s activity intensity into a corresponding level, from which the M value is estimated. Moreover, we have collected a multi-person thermal dataset to evaluate the method. The tracking-by-detection framework achieves a mAP50 (Mean Average Precision) rate of 89.1% and a MOTA (Multiple Object Tracking Accuracy) rate of 99.5%. The Icl estimation module gets an accuracy of 96.2% in locating skin and clothes. The M estimation module obtains a classification rate of 95.6% in categorizing activity level. All of these prove the usefulness of the proposed method in a multi-person scenario of real-life applications.


Author(s):  
Xiao Chen ◽  
Qian Wang

This paper proposes a model predictive controller (MPC) using a data-driven thermal sensation model for indoor thermal comfort and energy optimization. The uniqueness of this empirical thermal sensation model lies in that it uses feedback from occupants (occupant actual votes) to improve the accuracy of model prediction. We evaluated the performance of our controller by comparing it with other MPC controllers developed using the Predicted Mean Vote (PMV) model as thermal comfort index. The simulation results demonstrate that in general our controller achieves a comparable level of energy consumption and comfort while eases the computation demand posed by using the PMV model in the MPC formulation. It is also worth pointing out that since we assume that our controller receives occupant feedback (votes) on thermal comfort, we do not need to monitor the parameters such as relative humidity, air velocity, mean radiant temperature and occupant clothing level changes which are necessary in the computation of PMV index. Furthermore simulations show that in cases where occupants’ actual sensation votes might deviate from the PMV predictions (i.e., a bias associated with PMV), our controller has the potential to outperform the PMV based MPC controller by providing a better indoor thermal comfort.


Author(s):  
Nurshahrily Idura Ramli ◽  
Mohd Izani Mohamed Rawi ◽  
Ahmad Zahid Hijazi ◽  
Abdullah Hayyan Kunji Mohammed

<p>In this modern century where fine comfort is a necessity especially in buildings and occupied space, the study to satisfy one aspect of human comfort is a must. This study encompasses of exploring the physiological and environmental factors in achieving thermal comfort which specifically considering the clothing insulation and metabolic rate of students as well as the deployment of dry-bulb temperature, mean radiant temperature, humidity, and air movement in order to obtain the level of comfort students are experiencing in class. The level of comfort are detected by using ASHRAE 55 to determine the average thermal sensation response through the Predicted Mean Vote (PMV) value. An android application were developed to read input of recognizing clothing level (thickness of clothing) and capturing metabolic rate to cater the inputs for physiological factors, while radiant temperature, humidity and air movement are captured through static sensors set up in the classroom space. This paper analyses both the physiological and environmental factors in affecting students in class and further determine their comfort levels that is a major influencing factor of focus in learning. Through cross referencing collected data from IoT enabled nodes, it is found that both physiological and environmental factors, and the combination of them greatly influence in getting the most comfortable state with PMV value of 0.</p>


Author(s):  
Farhadur Reza ◽  
◽  
Shoichi Kojima ◽  
Wataru Ando

Water bodies play a significant role in its surrounding thermal environment. Thermal comfort in university spaces is critical that affects the students’ health and performance as well as the staffs. This study investigated thermal environment and comfort near lakeside and non-lakeside tropical university spaces. Standard Effective Temperature (SET*) have been calculated using recorded air temperature, relative humidity, globe temperature, air velocity, clothing insulation and metabolic rate to evaluate the thermal comfort in outdoor and indoor spaces. The effects of weather parameters have been clearly visible on the comfort index. The calculated SET* values indicate that the outdoor thermal comfort near a lake is much closer to the standard comfort zone than non-lakeside outdoor space. In the case of indoor thermal comfort, however, slightly a different scenario has been observed. To achieve the desirable indoor thermal environment, some design considerations are recommended based on findings.


2018 ◽  
Vol 57 ◽  
pp. 04001 ◽  
Author(s):  
Albert Al Touma ◽  
Djamel Ouahrani

Al-Majlis is the living space in residential buildings of the Arabian Gulf, and is where occupants spend most of their time. For this reason, the human thermal comfort in this space is of extreme importance and is often compromised due to hot outdoor weather conditions. In contrast with many thermal discomfort mitigation methods in outdoor environments, which become unadvisable in indoor spaces, this study investigates the effect of adding PCM-enhanced tiles to portions of the indoor envelope on the occupant’s thermal comfort and the space cooling energy demand. A simulation model of a space with tight building envelope in Qatar was developed on EnergyPlus with and without the addition of PCM-enhanced tiles. The selected country is a representative location of the Arabian Gulf. Considering different occupant’s positions, the addition of the tiles with PCM on their back was found to moderate the mean radiant temperature, operative temperature, Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD), all of which signify an improvement in the human thermal comfort. Lastly, this change in the indoor envelope was found to save 3.3% of the space daily thermal cooling energy demand during one harsh summer representative day.


Author(s):  
Atsumasa Yoshida ◽  
Yasuhiro Shimazaki ◽  
Shinichi Kinoshita ◽  
Ryota Suzuki

There is an increased world attention on environmental issues with the global trend of environmental degradation. Especially thermal environment was highly concerned as human safety. We have been focused on creation of amenity environment with energy-saving way. This study is uncommonly dealing with human feeling for human thermal comfort, that is to say quantification of environment has been done. The feeling of comfort is mixed sense and can be totally easier to improve compared with straightforward way, and this may lead to energy and cost saving way of improvement. Moreover, this is human-oriented and can reflect humans’ wishes. Since thermal comfort index is useful tool for understanding the present state and evaluating the impact of countermeasures, effectiveness of human thermal load which is thermal comfort index based on energy balance of human body was examined. The human thermal comfort around the human body in outdoor is influenced by six dominant factors; air temperature, humidity, solar radiation, wind speed, metabolism and clothing. The difference between indoor and outdoor is expressed mainly as non-uniform and unsteady. Therefore, the unsteady responses of each dominant factors were examined and clarified human thermal load is quite good estimation of human thermal comfort. In steady state and even in unsteady state, thermal comfort can be obtained by using human thermal load on the whole. The reason is human thermal load consider the amount of physiology and also weather parameters. In the process of creating energy balance model of human, clothing material was deeply considered. For establishing better thermal environment, clothing material is of great use, because clothing material has an impact on thermal exchange between exterior environment and human body and more easy way to improve in 6 factors. The traditional treatment of clothing in human science was only resistance of heat transfer and this was not enough for all clothing effects. In daily life, effect of humidity exists and moisture property is required. Moreover color of material has impact on energy balance in clothing material. In order to show a way of better thermal environment, the heat and the moisture transfer coefficients on clothing material, radiative properties, and additional properties such as convection heat transfer coefficient were measured, and energy flow of clothing material was totally investigated. Finally, the effects of clothing material for human thermal comfort were predicted and this energy balance human model has become much better model.


Sign in / Sign up

Export Citation Format

Share Document