Polymeric Hollow Fiber Heat Exchangers (PHFHEs): A New Type of Compact Heat Exchanger for Lower Temperature Applications

Author(s):  
Dimitrios M. Zarkadas ◽  
Baoan Li ◽  
Kamalesh K. Sirkar

Plastic heat exchangers are characterized by an inferior thermal performance compared to their metal counterparts. Therefore, their usage is mainly limited to handling corrosive media or when ultra high purity is required, e.g., pharmaceutical industry. Polymeric Hollow Fiber Heat Exchangers (PHFHEs) have recently been proposed [1] as a new type of heat exchanger that can overcome these constraints and offer the same or better thermal performance than metallic shell and tube or plate heat exchangers while occupying a much smaller volume. In this paper we report our results for heat transfer in PHFHEs with both parallel and cross flow in the shell side of the device. Fibers made of polypropylene (PP) and polyetheretherketone (PEEK) were tested. In addition, steam condensation studies in PHFHEs are reported for the first time. The overall heat transfer coefficients achieved for water-water and water-brine systems are as high as 1400 Wm−2K−1. These values are higher than any value reported for plastic heat exchangers and comparable with commonly acceptable design values for metal shell and tube heat exchangers. Similar coefficients were obtained for steam condensation. Polymeric hollow fiber heat exchangers can also achieve high thermal effectiveness, large number of transfer units (NTU) and very small height of a transfer unit (HTU), if properly rated. If designed like commercial membrane contactors, they can achieve up to 12 transfer units in a single device, not longer than 60–70 cm! In addition, the conductance per unit volume PHFHEs achieved was up to one order of magnitude higher compared to metal heat transfer equipment. This superior thermal performance is also accompanied by considerably lower pressure drops. Therefore, the operation of PHFHEs will be characterized by a low operating cost. Combined with the much lower cost, lower weight and elimination of metal contamination polymer materials offer, it is obvious that PHFHEs constitute a potential substitute for metal heat exchangers on both thermal performance and economical grounds. Possible application fields include the food, pharmaceutical and biomedical industries as well as applications where corrosion resistant, light and very efficient devices are required, i.e., desalination, solar and offshore heat transfer applications.

Author(s):  
Kyeong Mo Hwang ◽  
Tae Eun Jin

As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant.


Heat exchangers are prominent industrial applications where engineering science of heat transfer and Mass transfer occurs. It is a contrivance where transfer of energy occurs to get output in the form of energy transfer. This paper aims at finding a solution to improve the thermal performance in a heat exchanger by using passive method techniques. This experimental and numerical analysis deals with finding the temperature outlets of cold and hot fluid for different mass flow rates and also pressure drop in the tube and the annular side by adding an elliptical leaf strip in the pipe at various angles. The single elliptical leaf used in experiment has major to minor axes ratios as 2:1 and distance of 50 mm between two leaves are arranged at different angular orientations from 0 0 to 1800 with 100 intervals. Since it’s not possible to find the heat transfer rates and pressure drops at every orientation of elliptical leaf so a generalized regression neural network (GRNN) prediction tool is used to get outputs with given inputs to avoid experimentation. GRNN is a statistical method of determining the relationship between dependent and independent variables. The values obtained from experimentation and GRNN nearly had precise values to each other. This analysis is a small step in regard with encomiastic approach for enhancement in performance of heat exchangers


2021 ◽  
Author(s):  
praveen math

Abstract Shell and Tube heat exchangers are having special importance in boilers, oil coolers, condensers, pre-heaters. They are also widely used in process applications as well as the refrigeration and air conditioning industry. The robustness and medium weighted shape of Shell and Tube heat exchangers make them well suited for high pressure operations. The aim of this study is to experiment, validate and to provide design suggestion to optimize the shell and tube heat exchanger (STHE). The heat exchanger is made of acrylic material with 2 baffles and 7 tubes made of stainless steel. Hot fluid flows inside the tube and cold fluid flows over the tube in the shell. 4 K-type thermocouples were used to read the hot and cold fluids inlet and outlet temperatures. Experiments were carried out for various combinations of hot and cold water flow rates with different hot water inlet temperatures. The flow conditions are limited to the lab size model of the experimental setup. A commercial CFD code was used to study the thermal and hydraulic flow field inside the shell and tubes. CFD methodology is developed to appropriately represent the flow physics and the procedure is validated with the experimental results. Turbulent flow in tube side is observed for all flow conditions, while the shell side has laminar flow except for extreme hot water temperatures. Hence transition k-kl-omega model was used to predict the flow better for transition cases. Realizable k- epsilon model with non-equilibrium wall function was used for turbulent cases. Temperature and velocity profiles are examined in detail and observed that the flow remains almost uniform to the tubes thus limiting heat transfer. Approximately 2/3 rd of the shell side flow does not surround the tubes due to biased flow contributing to reduced overall heat transfer and increased pressure loss. On the basis of these findings an attempt has been made to enhance the heat transfer by inducing turbulence in the shel l side flow. The two baffles were rotated in opposite direction to each other to achieve more circulation in the shell side flow and provide more contact with tube surface. Various positions of the baffles were simulated and studied using CFD analysis and th e results are summarized with respect to heat transfer and pressure loss.


Author(s):  
Fadi A. Ghaith ◽  
Ahmed S. Izhar

This paper aims to enhance the thermal performance of an industrial shell-and-tube heat exchanger utilized for the purpose of cooling raw natural gas by means of mixture of Sales gas. The main objective of this work is to provide an optimum and reliable thermal design of a single-shelled finned tubes heat exchanger to replace the existing two- shell and tube heat exchanger due to the space limitations in the plant. A comprehensive thermal model was developed using the effectiveness-NTU method. The shell-side and tube-side overall heat transfer coefficient were determined using Bell-Delaware method and Dittus-Boelter correlation, respectively. The obtained results showed that the required area to provide a thermal duty of 1.4 MW is about 1132 m2 with tube-side and shell-side heat transfer coefficients of 950 W/m2K and 495 W/m2K, respectively. In order to verify the obtained results generated from the mathematical model, a numerical study was carried out using HTRI software which showed a good match in terms of the heat transfer area and the tube-side heat transfer coefficient.


Author(s):  
Majid Amidpour ◽  
Abazar Vahdat Azad

In this paper, the new approach of Constructal theory has been employed to design shell and tube heat exchangers. Constructal theory is a new method for optimal design in engineering applications. The purpose of this paper is optimization of shell and tube heat exchangers by reduction of total cost of the exchanger using the constructal theory. The total cost of the heat exchanger is the sum of operational costs and capital costs. The overall heat transfer coefficient of the shell and tube heat exchanger is increased by the use of constructal theory. Therefore, the capital cost required for making the heat transfer surface is reduced. Moreover, the operational energy costs involving pumping in order to overcome frictional pressure loss are minimized in this method. Genetic algorithm is used to optimize the objective function which is a mathematical model for the cost of the shell and tube heat exchanger and is based on constructal theory. The results of this research represent more than 50% reduction in costs of the heat exchanger.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2737
Author(s):  
Francesca Ceglia ◽  
Adriano Macaluso ◽  
Elisa Marrasso ◽  
Maurizio Sasso ◽  
Laura Vanoli

Improvements in using geothermal sources can be attained through the installation of power plants taking advantage of low and medium enthalpy available in poorly exploited geothermal sites. Geothermal fluids at medium and low temperature could be considered to feed binary cycle power plants using organic fluids for electricity “production” or in cogeneration configuration. The improvement in the use of geothermal aquifers at low-medium enthalpy in small deep sites favours the reduction of drilling well costs, and in addition, it allows the exploitation of local resources in the energy districts. The heat exchanger evaporator enables the thermal heat exchange between the working fluid (which is commonly an organic fluid for an Organic Rankine Cycle) and the geothermal fluid (supplied by the aquifer). Thus, it has to be realised taking into account the thermodynamic proprieties and chemical composition of the geothermal field. The geothermal fluid is typically very aggressive, and it leads to the corrosion of steel traditionally used in the heat exchangers. This paper analyses the possibility of using plastic material in the constructions of the evaporator installed in an Organic Rankine Cycle plant in order to overcome the problems of corrosion and the increase of heat exchanger thermal resistance due to the fouling effect. A comparison among heat exchangers made of commonly used materials, such as carbon, steel, and titanium, with alternative polymeric materials has been carried out. This analysis has been built in a mathematical approach using the correlation referred to in the literature about heat transfer in single-phase and two-phase fluids in a tube and/or in the shell side. The outcomes provide the heat transfer area for the shell and tube heat exchanger with a fixed thermal power size. The results have demonstrated that the plastic evaporator shows an increase of 47.0% of the heat transfer area but an economic installation cost saving of 48.0% over the titanium evaporator.


Author(s):  
K. Mohammadi ◽  
W. Heidemann ◽  
H. Mu¨ller-Steinhagen

A semi-analytical model is presented for the evaluation of the performance factor of the inlet zone of an E type shell and tube heat exchanger without leakage flows. The performance factor is defined as the ratio of dimensionless heat transfer coefficients and pressure drops of both vertical and horizontal baffle orientation and therefore facilitates the decision between horizontal and vertical baffle orientation of shell and tube heat exchangers. The model allows the calculation of the performance factor of the inlet zone as a function of the baffle cut, the shell-side Reynolds number at the inlet nozzle and the Prandtl number of the shell-side fluid. The application of the model requires the knowledge of the performance factor of water at baffle cut equal to 24% of the shell inside diameter. For the development of the model a numerical data basis is used due to the lack of experimental data for shell and tube heat exchangers with different baffle orientations. The numerical data are obtained from CFD calculations for steady state conditions within a segmentally baffled shell and tube heat exchanger following the TEMA standards. Air, water and engine oil with Prandtl numbers in the range of 0.7 to 206 are used as shell-side fluids. The semi-analytical model introduced for the performance factor predicts the CFD results with a relative absolute error less than 5%. The presented model has to be validated with further experimental data and/or numerical results which explain the effect of baffle orientation on the shell-side heat transfer coefficient and pressure drop in order to check the general applicability.


2017 ◽  
Vol 67 (2) ◽  
pp. 13-24
Author(s):  
Štefan Gužela ◽  
František Dzianik ◽  
Martin Juriga ◽  
Juraj Kabát

AbstractNowadays, the operating nuclear reactors are able to utilise only 1 % of mined out uranium. An effective exploitation of uranium, even 60 %, is possible to achieve in so-called fast reactors. These reactors commercial operation is expected after the year 2035. Several design configurations of these reactors exist. Fast reactors rank among the so-called Generation IV reactors. Helium-cooled reactor, as a gas-cooled fast reactor, is one of them. Exchangers used to a heat transfer from a reactor active zone (i.e. heat exchangers) are an important part of fast reactors. This paper deals with the design calculation of U-tube heat exchanger (precisely 1-2 shell and tube heat exchanger with U-tubes): water – helium.


2012 ◽  
Vol 516-517 ◽  
pp. 419-424
Author(s):  
Guo Rong Zhu ◽  
Xiao Hua Wang ◽  
Hong Biao Huang ◽  
Hu Chen

In this article, sensitivity analysis was performed using bidirectional single method with shell-and-tube heat exchanger as the basis and the entropy production in the working process of heat exchanger as target, to explore the optimizing direction for heat exchangers with the objective to reduce entropy production. First, the differential element analysis method was used in a case study of the entropy production of the heat transfer process - including the three heat transfer processes of convective heat exchange inside and outside the pipes and heat conduction across the pipe wall and the flow process - the fluid flowing process inside and outside the pipes, and the typical process parameter - dimensionless inlet heat exchange temperature difference, operation parameter - fluid flow rate inside the pipe and structural parameters - the heat transfer pipe inner diameter and length were used as characteristic parameters, to obtain the sensitivity coefficients under the conditions of the example, being respectively 0.95, 0.3, 0.3 and 0.38. The study in this article can provide some support to the energy efficiency evaluation of heat exchangers.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 675 ◽  
Author(s):  
Jingang Yang ◽  
Yaohua Zhao ◽  
Aoxue Chen ◽  
Zhenhua Quan

Domestic heat exchangers, even though widely used in industry, are not adequate for studies on low-temperature flue-gas use technologies. Despite spite their limitations, very few theoretical models have been investigated based on practical applications. Moreover, most of the existing studies on heat exchangers have focused particularly on one-dimensional and two-dimensional heat transfer models, while limited studies focus on three-dimensional ones. Therefore, this study aims at investigating the thermal performance of a low-temperature flue-gas heat recovery unit in the cold regions. Specifically, this study was conducted in the context of Changchun of Jilin Province, China, a city with the mean ambient temperature of −14 °C and mean diurnal temperature of −10 °C during winter. Experimental results showed that the thermal efficiency of the heat exchanger was higher than 60%. Through assessing the heat exchange coefficient and heat exchange efficiency of the heat exchanger, it is found that the thermal efficiency had been improved up to 0.77–0.83. Furthermore, the ICEPAK software and the standard k-ε RNG turbulence model were used to carry out simulations. The velocity and outlet temperature of fresh airflow and polluted airflow were simulated through setting different inlet temperatures of fresh air and polluted air inlet. Numerical results further indicated that the flow state was laminar flow. The micro heat pipe array side had small eddies and the heat transfer was significantly improved due to the flow of air along the surface of the micro heat pipe.


Sign in / Sign up

Export Citation Format

Share Document