Experimental Model to Characterize the Evaporative Cooling of Horizontal Roofs

2008 ◽  
Author(s):  
Margarita Gil Samaniego Ramos ◽  
He´ctor Enrique Campbell Rami´rez

Heat and mass transfer models were developed experimentally to characterize the evaporative cooling of horizontal roofs, heated by thermal radiation. Surface temperatures of flat plates were evaluated at dry conditions and when humidified with water atomizers. For both conditions, heat transfer rates were calculated, and for the wet case also the mass transfer rates were predicted. Experimental data for models validation were measured at environmental and controlled conditions. Accuracies achieved were 2% for surface temperature and 13% for water evaporation rate.

1978 ◽  
Vol 86 (1) ◽  
pp. 49-65 ◽  
Author(s):  
R. C. Ackerberg ◽  
R. D. Patel ◽  
S. K. Gupta

The problem of heat transfer (or mass transfer at low transfer rates) to a strip of finite length in a uniform shear flow is considered. For small values of the Péclet number (based on wall shear rate and strip length), diffusion in the flow direction cannot be neglected as in the classical Leveque solution. The mathematical problem is solved by the method of matched asymptotic expansions and expressions for the local and overall dimensionless heat-transfer rate from the strip are found. Experimental data on wall mass-transfer rates in a tube at small Péclet numbers have been obtained by the well-known limiting-current method using potassium ferrocyanide and potassium ferricyanide in sodium hydroxide solution. The Schmidt number is large, so that a uniform shear flow can be assumed near the wall. Experimental results are compared with our theoretical predictions and the work of others, and the agreement is found to be excellent.


Author(s):  
N.N. Novikov ◽  

A method for calculating the parameters of the microclimate in a livestock building using water-evaporative air conditioning is described. It makes it possible to choose a rational temperature and humidity conditions for a room in hot weather, calculate the required air exchange, water evaporation rate and select the appropriate equipment.


1984 ◽  
Vol 106 (1) ◽  
pp. 106-111 ◽  
Author(s):  
D. Dietz

The thermal performance of an air-heated/cooled, phase-change, heat stoage module was tested and evaluated. The module (rated at 38.7 kWh) consist of 130 vertically oriented tubes filled with 729 kg (1607 lb) of calcium chloride hexahydrate and enclosed in a rectangular box. Heat transfer rates measured during charging and discharging decreased with time as a result of decreasing effective heat transfer area and increasing thermal resistance of the phase-change material. These two dominant effects are included in a proposed mathematical model that predicted the experimental data.


2021 ◽  
Author(s):  
Mehdi Asadollahzadeh ◽  
Rezvan Torkaman ◽  
Meisam Torab-Mostaedi ◽  
Mojtaba Saremi

Abstract The current study focuses on the recovery of zinc ions by solvent extraction in the pulsed contactor. The Zn(II) ions from chloride solution were extracted into the organic phase containing D2EHPA extractant. The resulting data were characterized for the relative amount of (a) pulsed and no-pulsed condition; and (b) flow rate of both phases. Based on the mass balance equations for the column performance description, numerical computations of mass transfer in a disc-donut column were conducted and validated the experimental data for zinc extraction. Four different models, such as plug flow, backflow, axial dispersion, and forward mixing were evaluated in this study. The results showed that the intensification of the process with the pulsed condition increased and achieved higher mass transfer rates. The forward mixing model findings based on the curve fitting approach validated well with the experimental data. The results showed that an increase in pulsation intensity, as well as the phase flow rates, have a positive impact on the performance of the extractor, whereas the enhancement of flow rate led to the reduction of the described model parameters for adverse phase.


2004 ◽  
Vol 3 (1) ◽  
pp. 45
Author(s):  
E. Nogueira ◽  
B. D. Dantas ◽  
R. M. Cotta

In a gas-liquid annular two-phase flow one of the main factors influencing the determination of heat transfer rates is the average thickness of the liquid film. A model to accurately represent the heat transfer in such situations has to be able of determining the average liquid film thickness to within a reasonable accuracy. A typical physical aspect in gas-liquid annular flows is the appearance of interface waves, which affect heat, mass and momentum transfers. Existing models implicitly consider the wave effects in the momentum transfer by an empirical correlation for the interfacial friction factor. However, this procedure does not point out the difference between interface waves and the natural turbulent effects of the system. In the present work, the wave and mass transfer effects in the theoretical estimation of average liquid film thickness are analyzed, in comparison to a model that does not explicitly include these effects, as applied to the prediction of heat transfer rates in a thermally developing flow situation.


Author(s):  
Hongfang Gu ◽  
Qi Chen ◽  
Zhe Zhang ◽  
Haiyang Guo

The numerous studies on condensation flow patterns and heat transfer were focused on the horizontal inside single tube. A number of heat and mass transfer correlations are used for design of shellside condensers based on tubeside condensation flow regimes. Due to a complex geometry and measurement difficulty in a tube bundle, there are few publications reported on shellside condensation flow regime and heat transfer characteristics. To investigate the condensation flow patterns and heat and mass transfer mechanism at the different flow regimes, a horizontal shellside condenser was tested from a multipurpose condensation rig recently. The horizontal test bundle is made of 36 tubes with the staggered tube layout. The tube OD is 19 mm and the tube length is 1.0 m using stainless steel. Four visualization windows were placed on the front and back sides on the shell for photographing condensation flow patterns. Steam and steam/air mixture were used as the test fluids. The condensation flow patterns, condensate film thickness and droplets distribution were recorded using a high-speed digital camera at a wide range of condensation process conditions. The experimental data show that the condensation flow regime changes from the shear-controlled flow to gravity-controlled flow depending on the vapor and condensate loads, bundle location and the concentration of the non-condensable gas. These experimental data provide a fundamental approach for developing the heat and mass transfer correlateons at different shellside condensation patterns. This paper presents the experimental result on shellside condensation patterns associated with heat transfer characteristics.


1996 ◽  
Vol 63 (2) ◽  
pp. 529-538 ◽  
Author(s):  
A. Narain

Internal flow of pure vapor experiencing film condensation on the walls of a straight horizontal duct is studied. The commonly occurring annular case of turbulent (or laminar) vapor flow in the core and laminar flow of the liquid condensate—with or without waves on the interface—is emphasized. We present a new methodology which models interfacial shear with the help of theory, computations, and reliable experimental data on heat transfer rates. The theory—at the point of onset of condensation—deals with issues of asymptotic form of interfacial shear, nonuniqueness of solutions, and selection of the physically admissible solution by a stability type criteria. Other details of the flow are predicted with the help of the proposed modeling approach. These predictions are shown to be in agreement with relevant experimental data. The trends for film thickness, heat transfer rates, and pressure drops are also made available in the form of power-law correlations.


Author(s):  
B. Guyon ◽  
T. Arts

The calculation of surface temperature on gas turbine blades in severe operating conditions requires a detailed knowledge of boundary layers behaviour. The prediction of laminar to turbulent transition as to existence and location, as well as the evaluation of heat transfer rates are major concerns. The program developed by SNECMA for this purpose is presented, in which models are introduced to take into account the main effects occuring on blades without film-cooling. The algorithm and discretisation scheme for boundary layer equations is Patankar and Spalding’s, with profiles initialization by Pohlhausen’s method. The turbulence and transition model, after Mc Donald and Fish, was improved in search for more stability and to have a better detection of the beginning of the transition. Adams and Johnston’s model for curvature, including propagation effects, was adapted to a transitional boundary layer. The validation tests of this program are described, which are based on numerous experimental data taken from a bibliography of tests over flat plates and blades. Other tests use heat transfer rate measurements conducted by SNECMA, together with VKI, on vanes and blades in non-rotating grids. The calculation results are further compared to the STAN5 program results; they show a superiority in predicting the transfer rates on a convex surface and for transitional boundary layers.


1970 ◽  
Vol 92 (3) ◽  
pp. 385-392 ◽  
Author(s):  
W. R. Wolfram ◽  
W. F. Walker

The present study was performed in order to determine the effects of upstream mass injection on downstream heat transfer in a reacting laminar boundary layer. The study differs from numerous previous investigations in that no similarity assumptions have been made. The complete set of coupled reacting laminar boundary layer equations with discontinuous mass injection was solved for this problem using an integral-matrix technique. The effects of mass injection on heat transfer to both sharp and blunt-nosed isothermal flat plates were studied for a Mach 2 freestream. The amount of injection and the length of the injected region were varied for each body. Heat transfer rates were found to decrease markedly in the injected region. A sharp rise in heat transfer was found immediately downstream of the region of injection followed by an asymptotic approach to the heat transfer rates calculated for the case of no injection. An insulating effect was found to persist for a considerable distance downstream from the injection region. The distance required for this insulating effect to die out was found to depend on the length of the injection region as well as the rate of injection.


Sign in / Sign up

Export Citation Format

Share Document