scholarly journals Hypervelocity impact performance of 3D printed aluminum panels

Author(s):  
Bruce A. Davis ◽  
Richard A. Hagen ◽  
Robert J. McCandless ◽  
Eric L. Christiansen ◽  
Dana M. Lear

Abstract NASA, JSC has been developing a light-weight, multi-functional sandwich core for habitable structure over the last several years. Typically honeycomb-based structures have been and still are a common structural component for many applications in the aerospace industry, unfortunately, honeycomb structures with an ordered, open path through the thickness have served to channel the micro-meteoroid or orbital debris into the pressure wall (instead of disassociating and decelerating). The development of a metallic open cell foam core has been explored to enhance the micro-meteoroid or orbital debris protection, which is heavier than comparable honeycomb-based structures when non-structural requirements for deep space environments (vacuum, micro-meteoroids/orbital debris, and radiation) have not been considered. While the metallic foam core represents a notable improvement in this area, there is an overwhelming need to further reduce the weight of space vehicles; especially when deep space (beyond low earth orbit, or LEO) is considered. NASA, JSC is currently developing a multi-functional sandwich panel using additive machining (3D printing), this effort evaluated the material response of a limited amount of 3D printed aluminum panels under hypervelocity impact conditions. The four 3D printed aluminum panels provided for this effort consisted of three body centric cubic lattice structure core and one kelvin cell structure core. Each panel was impacted once with nominally the same impact conditions (0.34cm diameter aluminum sphere impacting at 6.8 km/s at 0 degrees to surface normal). All tests were impacted successfully, with the aforementioned impact conditions. Each of the test panels maintained their structural integrity from the hypervelocity impact event with no damage present on the back side of the panel for any of the tests. These tests and future tests will be used to enhance development of 3D printed structural panels.

Author(s):  
Katarina Monkova ◽  
Peter Pavol Monka ◽  
Jan Vanca ◽  
Milan Zaludek ◽  
Oldrich Suba

2021 ◽  
Vol 15 (2) ◽  
pp. 8169-8177
Author(s):  
Berkay Ergene ◽  
İsmet ŞEKEROĞLU ◽  
Çağın Bolat ◽  
Bekir Yalçın

In recent years, cellular structures have attracted great deal of attention of many researchers due to their unique properties like exhibiting high strength at low density and great energy absorption. Also, the applications of cellular structures (or lattice structures) such as wing airfoil, tire, fiber and implant, are mainly used in aerospace, automotive, textile and biomedical industries respectively. In this investigation, the idea of using cellular structures in pipes made of acrylonitrile butadiene styrene (ABS) material was focused on and four different pipe types were designed as honeycomb structure model, straight rib pattern model, hybrid version of the first two models and fully solid model. Subsequently, these models were 3D printed by using FDM method and these lightweight pipes were subjected to compression tests in order to obtain stress-strain curves of these structures. Mechanical properties of lightweight pipes like elasticity modulus, specific modulus, compressive strength, specific compressive strength, absorbed energy and specific absorbed energy were calculated and compared to each other. Moreover, deformation modes were recorded during all compression tests and reported as well. The results showed that pipe models including lattice wall thickness could be preferred for the applications which don’t require too high compressive strength and their specific energy absorption values were notably capable to compete with fully solid pipe structures. In particular, rib shape lattice structure had the highest elongation while the fully solid one possessed worst ductility. Lastly, it is pointed out that 3D printing method provides a great opportunity to have a foresight about production of uncommon parts by prototyping.


2021 ◽  
Vol 8 ◽  
Author(s):  
Le Dong ◽  
Chengru Jiang ◽  
Jinqiang Wang ◽  
Dong Wang

The mechanical behaviors of lattice structures can be tuned by arranging or adjusting their geometric parameters. Once fabricated, the lattice’s mechanical behavior is generally fixed and cannot adapt to environmental change. In this paper, we developed a shape reconfigurable, highly stretchable lattice structure with tunable Poisson’s ratio. The lattice is built based on a hexagonal honeycomb structure. By replacing the straight beam with curled microstructure, the stretchability of the lattice is significantly improved. The Poisson’s ratio is adjusted using a geometric angle. The lattice is 3D printed using a shape memory polymer. Using its shape memory effect, the lattice demonstrates tunable shape reconfigurability as the ambient temperature changes. To capture its high stretchability, tunable Poisson’s ratio and shape reconfigurability, a phase evolution model for lattice structure is used. In the theoretical model, the effects of temperature on the material’s nonlinearity and geometric nonlinearity due to the lattice structure are assumed to be decoupled. The theoretical shape change agrees well with the Finite element results, while the theoretical model significantly reduces the computational cost. Numerical results show that the geometrical parameters and the ambient temperature can be manipulated to transform the lattice into target shapes with varying Poisson’s ratios. This work provides a design method for the 3D printed lattice structures and has potential applications in flexible electronics, soft robotics, and biomedicine.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 6218-6223 ◽  
Author(s):  
W. HOU ◽  
Z. WANG ◽  
L. ZHAO ◽  
G. LU ◽  
D. SHU

This paper is concerned with the load-carrying capacities of a circular sandwich panel with metallic foam core subjected to quasi-static pressure loading. The analysis is performed with a newly developed yield criterion for the sandwich cross section. The large deflection response is estimated by assuming a velocity field, which is defined based on the initial velocity field and the boundary condition. A finite element simulation has been performed to validate the analytical solution for the simply supported cases. Good agreement is found between the theoretical and finite element predictions for the load-deflection response.


2013 ◽  
Vol 634-638 ◽  
pp. 2808-2812
Author(s):  
Zhu Feng Sun ◽  
Ling Yun Xie

Explored the influence of pore structure of foam metal material on mechanical behavior of fracture. Discuss fracture toughness of several different micro geometric structure of foam metal material with finite element method. The author's calculations showed, microstructure and loading mode has an important effect on the fracture toughness of the foam metal material. due to ignoring the effects of cell structure on the mechanical properties of materials, the classic fracture toughness criterion -crack tip opening displacement (COD) is incomplete, it would be more efficient to take opening displacement change rate of the crack-tip as the parameter to characteristic the metallic foam material fracture toughness.


1996 ◽  
Author(s):  
Eric L. Christiansen ◽  
Jeanne Lee Crews ◽  
Justin H. Kerr ◽  
Lalit C. Chhabildas

Author(s):  
Gopal K Maharjan ◽  
Sohaib Z Khan ◽  
Syed H Riza ◽  
SH Masood

2020 ◽  
Vol 18 (4) ◽  
pp. 404-423
Author(s):  
Roberto Naboni ◽  
Anja Kunic ◽  
Luca Breseghello

Building with additive manufacturing is an increasingly relevant research topic in the field of Construction 4.0, where designers are seeking higher levels of automation, complexity and precision compared to conventional construction methods. As an answer to the increasing problem of scarcity of resources, the presented research exploits the potential of Fused Deposition Modelling in the production of a lightweight load-responsive cellular lattice structure at the architectural scale. The article offers an extensive insight into the computational processes involved in the design, engineering, analysis, optimization and fabrication of a material-efficient, fully 3D printed, lattice structure. Material, structure and manufacturing features are integrated within the design development in a comprehensive computational workflow. The article presents methods and results while discussing the project as a material-efficient approach to complex structures.


Author(s):  
Andrew Thurber ◽  
Javid Bayandor

The increased frequency of exploration into space has caused a dramatic rise in the density of debris in orbit. Orbital debris, both natural and man-made, poses an extreme impact risk to satellites and spacecraft. The relative velocities between orbital components and debris can exceed thousands of meters per second, giving rise to immense kinetic energies even for small objects. In such a hypervelocity impact event, the shock pressures exceed the strength of common aerospace materials, and brief shock-induced temperature rises cause melting and vaporization of most structural bodies. Under these extreme conditions, the failure and deformation of solids can resemble fluid flow. By using meshless Lagrangian models in an explicit computational framework, this work identifies analogous fluidic interactions and further quantifies the role of shear and inertial forces in hypervelocity impacts (HVI).


Sign in / Sign up

Export Citation Format

Share Document