Characteristics of Particulate Emissions of Compression Ignition Engine Fueled With Biodiesel Derived From Soybean

Author(s):  
Myung Yoon Kim ◽  
Seung Hyun Yoon ◽  
Jin Woo Hwang ◽  
Chang Sik Lee

An experimental investigation was performed on the effect of engine speed and EGR (exhaust gas recirculation) on the particle size distribution and exhaust gas emissions in a compression ignition engine fueled with biodiesel derived from soybean. The results obtained by biodiesel fuel were compared to those obtained by petroleum diesel fuel with sulfur contents of 16.3 ppm. The scanning mobility particle sizer (SMPS) was used for size distribution analysis and it measured mobility equivalent particle diameter in the range of 10.4 to 392.4 nm. In addition to the size distribution of the particles, exhaust emissions such as oxides of nitrogen (NOx), hydrocarbon (HC), and carbon monoxide (CO) emissions and combustion characteristics under different engine operating parameters were investigated. The engine operating parameters in terms of engine speed, EGR, injection pressure, and intake pressure were varied to investigate the individual impact of the operating parameters. As the engine speed was increased for the both fuels, the larger size particles which dominantly contributes particle mass was increased, however total numbers of particle were reduced. Comparing to petroleum diesel fuel, the combustion of biodiesel fuel in the engine reduced particle concentration of relatively larger size where most of the particle mass is found. Moreover, dramatically lower hydrocarbon and carbon monoxide emissions were found at the biodiesel fueled engine. However, the NOx emission of biodiesel fueled diesel engine shows slightly higher concentration compared to diesel fuel at the same injection timing.

Author(s):  
Myung Yoon Kim ◽  
Seung Hyun Yoon ◽  
Jin Woo Hwang ◽  
Chang Sik Lee

An experimental investigation was performed on the effect of engine speed, exhaust gas recirculation (EGR), and boosting intake pressure on the particulate size distribution and exhaust gas emissions in a compression ignition engine fueled with biodiesel derived from soybean. The results obtained by biodiesel fuel were compared to those obtained by petroleum diesel fuel with a sulfur content of 16.3ppm. A scanning mobility particulate sizer was used for size distribution analysis, and it measured mobility equivalent particulate diameter in the range of 10.4–392.4nm. In addition to the size distribution of the particulates, exhaust emissions, such as oxides of nitrogen (NOx), hydrocarbon, and carbon monoxide emissions, and combustion characteristics under different engine operating parameters were investigated. The engine operating parameters in terms of engine speed, EGR, and intake pressure were varied to investigate their individual impacts on the combustion and exhaust emission characteristics. As the engine speed was increased for both fuels, the larger size particulates, which dominantly contribute particulate mass, were increased; however, total numbers of particulate were reduced. Compared to diesel fuel, the combustion of biodiesel fuel reduced particulate concentration of relatively larger size where most of the particulate mass is found. Moreover, dramatically lower hydrocarbon and carbon monoxide emissions were found in the biodiesel-fueled engine. However, the NOx emission of the biodiesel-fueled diesel engine shows slightly higher concentration compared to diesel fuel at the same injection timing. EGR significantly increased the larger size particulates, which have diameter near the maximum measurable range of the instrument; however, the total number of particulates was found not to significantly increase with increasing EGR rate for both fuels. Boosting intake pressure shifted the particulate size distribution to smaller particulate diameter and effective reduction of larger size particulate was found for richer operating conditions.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
I. M. Yusri ◽  
M. K. Akasyah ◽  
R. Mamat ◽  
O. M. Ali

The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number as compared to other alternatives fuel. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using multi-cylinder, 4-stroke engine with common rail direct injection system to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar. Based on the results Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.


2014 ◽  
Vol 663 ◽  
pp. 26-33
Author(s):  
Y.H. Teoh ◽  
H.H. Masjuki ◽  
M.A. Kalam ◽  
Muhammad Afifi Amalina ◽  
H.G. How

This study investigated the effects of premixed diesel fuel on the auto-ignition characteristics in a light duty compression ignition engine. A partial homogeneous chargecompression ignition (HCCI) engine was modified from a single cylinder, four-stroke, direct injection compression ignition engine. The partial HCCI is achieved by injecting diesel fuel into the intake port of the engine, while maintaining diesel fuel injected in cylinder for combustion triggering. The auto-ignition of diesel fuel has been studied at various premixed ratios from 0 to 0.60, under engine speed of 1600 rpm and 20Nm load. The results for performance, emissions and combustion were compared with those achieved without premixed fuel. From the heat release rate (HRR) profile which was calculated from in-cylinder pressure, it is clearly observed that two-stage and three-stage ignition were occurred in some of the cases. Besides, the increases of premixed ratio to some extent have significantly reduced in NO emission.


2014 ◽  
Vol 46 (1) ◽  
pp. 125-134
Author(s):  
Sławomir Wierzbicki ◽  
Michał Śmieja ◽  
Andrzej Piętak

One of the ways of increasing the share of renewable fuels in the overall energy balance is to develop effective methods for using low calorific gaseous fuels, including biogas, to fuel combustion engines. This paper presents the results of research on the effect of changing the diesel fuel pilot charge injection advance angle on the operating parameters of a dual-fuel compression-ignition engine. The obtained results confirm the significant effect of the pilot charge injection advance angle on the engine torque value at a constant engine speed.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jean Paul Gram Shou ◽  
Marcel Obounou ◽  
Rita Enoh Tchame ◽  
Mahamat Hassane Babikir ◽  
Timoléon Crépin Kofané

Compression ignition engine modeling draws great attention due to its high efficiency. However, it is still very difficult to model compression ignition engine due to its complex combustion phenomena. In this work, we perform a theoretical study of steam injection being applied into a single-cylinder four-strokes direct-injection and naturally aspirated compression ignition engine running with diesel and biodiesel fuels in order to improve the performance and reduce NO emissions by using a two-zone thermodynamic combustion model. The results obtained from biodiesel fuel are compared with the ones of diesel fuel in terms of performance, adiabatic flame temperatures, and NO emissions. The steam injection method could decrease NO emissions and improve the engine performances. The results showed that the NO formation characteristics considerably decreased and the performance significantly increased with the steam injection method. The relative errors for computed nitric oxide concentration values of biodiesel fuel and diesel fuel in comparison to the measured ones are 2.8% and 1.6%, respectively. The experimental and theoretical results observed show the highly satisfactory coincidences.


Energy ◽  
2019 ◽  
Vol 187 ◽  
pp. 115970 ◽  
Author(s):  
Farzad Jaliliantabar ◽  
Barat Ghobadian ◽  
Gholamhassan Najafi ◽  
Rizalman Mamat ◽  
Antonio Paolo Carlucci

2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Paramvir Singh ◽  
S. R. Chauhan ◽  
Varun Goel ◽  
Ashwani K. Gupta

The results obtained on wear assessment from a compression ignition (CI) engine fueled with a blend of 70% amla seed biodiesel (AB) and 30% eucalyptus oil (EU) on volume basis (called AB70EU30). The results showed stable engine operation and good operability of the engine-fuel system with the binary biodiesel fuel blend. The feasibility of this blend over a long-term endurance tests was explored. The specific assessment examination included the fate of cylinder head, pump plunger, injector nozzle, and piston crown, which affects the engine performance and engine life. The experimental results revealed better tribological performance characteristics with the binary fuel blend as compared to contemporary diesel fuel. No specific problem was encountered during the long-term endurance tests with the binary fuel blend using the modified engine parameters. The results show that the binary fuel mixture offers good potential for use as diesel fuel in CI engines while maintaining good performance and endurance.


2020 ◽  
Vol 38 (5A) ◽  
pp. 779-788
Author(s):  
Marwa N. Kareem ◽  
Adel M. Salih

In this study, the sunflowers oil was utilized as for producing biodiesel via a chemical operation, which is called trans-esterification reaction. Iraqi diesel fuel suffers from high sulfur content, which makes it one of the worst fuels in the world. This study is an attempt to improve the fuel specifications by reducing the sulfur content of the addition of biodiesel fuel to diesel where this fuel is free of sulfur and has a thermal energy that approaches to diesel.20%, 30% and 50% of Biodiesel fuel were added to the conventional diesel. Performance tests and pollutants of a four-stroke single-cylinder diesel engine were performed. The results indicated that the brake thermal efficiency a decreased by (4%, 16%, and 22%) for the B20, B30 and B50, respectively. The increase in specific fuel consumption was (60%, 33%, and 11%) for the B50, B30, and B20 fuels, respectively for the used fuel blends compared to neat diesel fuel. The engine exhaust gas emissions measures manifested a decreased of CO and HC were CO decreased by (13%), (39%) and (52%), and the HC emissions were lower by (6.3%), (32%), and (46%) for B20, B30 and B50 respectively, compared to diesel fuel. The reduction of exhaust gas temperature was (7%), (14%), and (32%) for B20, B30 and B50 respectively. The NOx emission increased with the increase in biodiesel blends ratio. For B50, the raise was (29.5%) in comparison with diesel fuel while for B30 and B20, the raise in the emissions of NOx was (18%) and...


Sign in / Sign up

Export Citation Format

Share Document