The Evolution of Diesel Engine Performance Prediction

Author(s):  
Roy J. Primus

Thermodynamic system performance modeling has become an integral part of the engine development process. The modeling tools used for this type of analysis have evolved from fairly simple calculations of limited scope into detailed simulations with ever-increasing complexity. These analytical tools are based on the combination of basic concepts, physical phenomena and experimental correlations. As with other categories of analysis, their evolution has also been closely coupled with the advances in computer technology. This document provides a historic view of thermodynamic system simulation and revisits some of the developments in modeling techniques, engine measurements, data acquisition systems and computer hardware that have contributed to the understanding of engine performance prediction.

2014 ◽  
Vol 663 ◽  
pp. 336-341 ◽  
Author(s):  
Mohd Farid Muhamad Said ◽  
Zulkarnain Abdul Latiff ◽  
Aminuddin Saat ◽  
Mazlan Said ◽  
Shaiful Fadzil Zainal Abidin

In this paper, engine simulation tool is used to investigate the effect of variable intake manifold and variable valve timing technologies on the engine performance at full load engine conditions. Here, an engine model of 1.6 litre four cylinders, four stroke spark ignition (SI) engine is constructed using GT-Power software to represent the real engine conditions. This constructed model is then correlated to the experimental data to make sure the accuracy of this model. The comparison results of volumetric efficiency (VE), intake manifold air pressure (MAP), exhaust manifold back pressure (BckPress) and brake specific fuel consumption (BSFC) show very well agreement with the differences of less than 4%. Then this correlated model is used to predict the engine performance at various intake runner lengths (IRL) and various intake valve open (IVO) timings. Design of experiment and optimisation tool are applied to obtain optimum parameters. Here, several configurations of IRL and IVO timing are proposed to give several options during the engine development work. A significant improvement is found at configuration of variable IVO timing and variable IRL compared to fixed IVO timing and fixed IRL.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1612
Author(s):  
Federico Millo ◽  
Andrea Piano ◽  
Benedetta Peiretti Paradisi ◽  
Mario Rocco Marzano ◽  
Andrea Bianco ◽  
...  

In this paper, an integrated and automated methodology for the coupling between 1D- and 3D-CFD simulation codes is presented, which has been developed to support the design and calibration of new diesel engines. The aim of the proposed methodology is to couple 1D engine models, which may be available in the early stage engine development phases, with 3D predictive combustion simulations, in order to obtain reliable estimates of engine performance and emissions for newly designed automotive diesel engines. The coupling procedure features simulations performed in 1D-CFD by means of GT-SUITE and in 3D-CFD by means of Converge, executed within a specifically designed calculation methodology. An assessment of the coupling procedure has been performed by comparing its results with experimental data acquired on an automotive diesel engine, considering different working points, including both part load and full load conditions. Different multiple injection schedules have been evaluated for part-load operation, including pre and post injections. The proposed methodology, featuring detailed 3D chemistry modeling, was proven to be capable assessing pollutant formation properly, specifically to estimate NOx concentrations. Soot formation trends were also well-matched for most of the explored working points. The proposed procedure can therefore be considered as a suitable methodology to support the design and calibration of new diesel engines, due to its ability to provide reliable engine performance and emissions estimations from the early stage of a new engine development.


Author(s):  
Max Maschewske ◽  
Erich Rabassa ◽  
Kimm Karrip ◽  
Greg Vander Veen ◽  
Randy Lunsford ◽  
...  

Motivated by the need to achieve greater efficiency in the product development cycle, engine manufacturers in the heavy-duty industry are relying more and more on analytical tools to help resolve performance issues, minimize testing costs and reduce time to market. This is particularly the case in the area of power cylinder development, since the physical phenomena occurring within the cylinders are difficult to observe and quantify. However, analytical tools are useful only if they are able to accurately represent the physical systems that they are supposed to simulate. It therefore becomes critical to establish a correlation between model predictions and empirical measurements. To this end, a correlation study was initiated comparing power cylinder analytical modeling results to empirical measurements in a John Deere 6135H 13.5L I-6 engine. The engine test measurements that were carried out included cylinder pressure, piston land pressure, engine blowby, and lube oil consumption. The correlation parameters considered in the study included piston land gas pressures, power cylinder contribution to engine blowby, and lube oil consumption mechanisms.


Author(s):  
R. Pearson ◽  
M. Bassett ◽  
P. Virr ◽  
S. Lever ◽  
A. Early

The sensitivity of engine performance to gas-dynamic phenomena in the exhaust system has been known for around 100 years but is still relatively poorly understood. The nonlinearity of the wave-propagation behaviour renders simple empirical approaches ineffective, even in a single-cylinder engine. The adoption of analytical tools such as engine-cycle-simulation codes has enabled greater understanding of the tuning mechanisms but for multi-cylinder engines has required the development of accurate models for pipe junctions. The present work examines the propagation of pressure waves through pipe junctions using shock-tube rigs in order to validate a computational model. Following this the effects of exhaust-system gas dynamics on engine performance are discussed using the results from an engine-cycle-simulation program based on the equations of one-dimensional compressible fluid flow.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kejun Hu ◽  
Kanty Rabenorosoa ◽  
Morvan Ouisse

Shape memory alloys (SMAs) are a group of metallic alloys capable of sustaining large inelastic strains that can be recovered when subjected to a specific process between two distinct phases. Regarding their unique and outstanding properties, SMAs have drawn considerable attention in various domains and recently became appropriate candidates for origami robots, that require bi-directional rotational motion actuation with limited operational space. However, longitudinal motion-driven actuators are frequently investigated and commonly mentioned, whereas studies in SMA-based rotational motion actuation is still very limited in the literature. This work provides a review of different research efforts related to SMA-based actuators for bi-directional rotational motion (BRM), thus provides a survey and classification of current approaches and design tools that can be applied to origami robots in order to achieve shape-changing. For this purpose, analytical tools for description of actuator behaviour are presented, followed by characterisation and performance prediction. Afterward, the actuators’ design methods, sensing, and controlling strategies are discussed. Finally, open challenges are discussed.


Author(s):  
Alessandro Franco ◽  
Carlo Bartoli

The aim of this paper is to expose the main involved physical phenomena underlying the alteration of convective heat transfer in a heat exchanger subjected to imposed vibrations. This technique seems to have interesting features and industrial applications, such as efficiency increase, heat transfer rate control and cleanliness action. However, a clear description and comprehension of how vibrations may alter the convective heat transfer coefficient in a heat exchanger is no still reached due to the complexity of the involved physical mechanisms. For this reason, after a presentation and a schematisation of the analyzed thermodynamic system, the fundamental alterations of the thermo-fluid dynamics fields are described. Then, the main involved physical phenomena are exposed for the three cases of gaseous, monophasic liquid and boiling liquid mediums. Finally, on the basis of the characteristics of these described phenomena, some considerations and indications of general validity are presented.


Author(s):  
Rassem R. Henry

This paper describes an engine-starting simulation that uses models of the electrical, engine dynamics and engine thermodynamics subsystems combining them with engine friction models. One of these friction models uses the physical parameters of the engine as basis for estimating the friction torque. This allows engine performance prediction, hence the ability to size the electrical starting system, without engine availability. The resultant simulation is developed using SIMULINK/MATLAB™ and it has been validated for two engines; the first is a 4-cylinder engine with a conventional valve train, and relatively high friction by today’s standards, and the second is a more recent 3-cylinder engine with lowfriction. Validation of the first engine was done based on matching its published starting tests with results obtained using this paper’s simulation. The validation of the second engine was carried out by comparing engine test results with simulation results. Tests in the first case were for engine starting including firing and in the second case were for cranking only conditions.


Sign in / Sign up

Export Citation Format

Share Document