Exhaust System Gas-Dynamics in Internal Combustion Engines

Author(s):  
R. Pearson ◽  
M. Bassett ◽  
P. Virr ◽  
S. Lever ◽  
A. Early

The sensitivity of engine performance to gas-dynamic phenomena in the exhaust system has been known for around 100 years but is still relatively poorly understood. The nonlinearity of the wave-propagation behaviour renders simple empirical approaches ineffective, even in a single-cylinder engine. The adoption of analytical tools such as engine-cycle-simulation codes has enabled greater understanding of the tuning mechanisms but for multi-cylinder engines has required the development of accurate models for pipe junctions. The present work examines the propagation of pressure waves through pipe junctions using shock-tube rigs in order to validate a computational model. Following this the effects of exhaust-system gas dynamics on engine performance are discussed using the results from an engine-cycle-simulation program based on the equations of one-dimensional compressible fluid flow.

Author(s):  
Adam Feneley ◽  
Apostolos Pesiridis ◽  
Hua Chen

As governments around the world ramp up their efforts to reduce CO2 emissions, downsizing internal combustion engines has become a dominant trend in the automotive industry. Air charging systems are being utilised to increase power density and therefore lower emissions by downsizing internal combustion engines. Turbocharging represents the majority of these air charging systems, which are commonly adopted for commercial and passenger vehicles. The process of matching turbomachinery to an engine during early-stage development is important to achieving maximum engine performance in terms of power output and the reduction of emissions. Despite on-engine conditions providing highly unsteady gas flows, current turbocharger development commonly uses performance maps that are produced from steady state measurements. There are other significant sources of error to be found in early stage turbocharger performance prediction, such as the omission of heat transfer effects, and the use of data extrapolation methods to cover the entire operating range of a device from limited data sets. Realistic engine conditions provide a complex heat transfer scenario, which is dependent upon load history and the component layout of the engine bay. Heat transfer effects are particularly prevalent at low engine loads, whilst pulsating effects are significant at both high and low engine speeds (and therefore exhaust pulse frequency). Compressor maps are often provided by manufacturers with a level of heat transfer corresponding to a gas stand test, not realistic engine conditions. This causes a mismatch when using the aforementioned maps in commercial engine codes. This reduces the quality of overall engine performance predictions, since as the temperature of the exhaust gas on the turbine side rises, the performance prediction increasingly deviates from the usual adiabatic assumption used in simulations. In the present work, a one-dimensional unsteady flow model has been developed to predict the performance of a vaneless turbine under pulsating inlet conditions, with scope to account for heat transfer effects. Flow within the volute is considered to be one-dimensional and unsteady, with mass addition and withdrawal used to simulate the gas flow between the volute and rotor. Rotor passages are also treated as one-dimensional and unsteady, with the equations being solved by the method of characteristics. This model is able to simulate the circumferential feeding of the rotor from the casing, unlike many previous zero and one-dimensional models. Building upon previous work, the basis of this code has been constructed in C++ with future integration with other modern gas dynamics codes in mind. By providing the appropriate instantaneous operating conditions at specified time intervals, a code such as this could theoretically negate the need for maps produced by steady-state data.


2017 ◽  
Vol 19 (10) ◽  
pp. 1005-1023 ◽  
Author(s):  
Jerald A Caton

The thermodynamic limitation for the maximum efficiencies of internal combustion engines is an important consideration for the design and development of future engines. Knowing these limits helps direct resources to those areas with the most potential for improvements. Using an engine cycle simulation which includes the first and second laws of thermodynamics, this study has determined the fundamental thermodynamics that are responsible for these limits. This work has considered an automotive engine and has quantified the maximum efficiencies starting with the most ideal conditions. These ideal conditions included no heat losses, no mechanical friction, lean operation, and short burn durations. Then, each of these idealizations is removed in a step-by-step fashion until a configuration that represents current engines is obtained. During this process, a systematic thermodynamic evaluation was completed to determine the fundamental reasons for the limitations of the maximum efficiencies. For the most ideal assumptions, for compression ratios of 20 and 30, the thermal efficiencies were 62.5% and 66.9%, respectively. These limits are largely a result of the combustion irreversibilities. As each of the idealizations is relaxed, the thermal efficiencies continue to decrease. High compression ratios are identified as an important aspect for high-efficiency engines. Cylinder heat transfer was found to be one of the largest impediments to high efficiency. Reducing cylinder heat transfer, however, is difficult and may not result in much direct increases of piston work due to decreases of the ratio of specific heats. Throughout this work, the importance of high values of the ratio of specific heats was identified as important for achieving high thermal efficiencies. Depending on the selection of constraints, different values may be given for the maximum thermal efficiency. These constraints include the allowed values for compression ratio, heat transfer, friction, stoichiometry, cylinder pressure, and pressure rise rate.


Author(s):  
Randy P. Hessel ◽  
Ettore Musu ◽  
Salvador M. Aceves ◽  
Daniel L. Flowers

A computational mesh is required when performing CFD-combustion modeling of internal combustion engines. For combustion chambers with moving pistons and valves, like those in typical cars and trucks, the combustion chamber shape changes continually in response to piston and valve motion. The combustion chamber mesh must then also change at each time step to reflect that change in geometry. The method of changing the mesh from one computational time step to the next is called rezoning. This paper introduces a new method of mesh rezoning for the KIVA3V CFD-combustion program. The standard KIVA3V code from Los Alamos National Laboratory comes with standard rezoners that very nicely handle mesh motion for combustion chambers whose mesh does not include valves and for those with flat heads employing vertical valves. For pent-roof and wedge-roof designs KIVA3V offers three rezoners to choose from, the choice depending on how similar a combustion chamber is to the sample combustion chambers that come with KIVA3V. Often, the rezoners must be modified for meshes of new combustion chamber geometries to allow the mesh to successfully capture change in geometry during the full engine cycle without errors. There is no formal way to approach these modifications; typically this requires a long trial and error process to get a mesh to work for a full engine cycle. The benefit of the new rezoner is that it replaces the three existing rezoners for canted valve configurations with a single rezoner and has much greater stability, so the need for ad hoc modifications of the rezoner is greatly reduced. This paper explains how the new rezoner works and gives examples of its use.


2021 ◽  
pp. 41-47
Author(s):  
Vladimir Tupov ◽  
O. Matasova

Insertion losses as the main characteristic that mathematically describes the acoustic efficiency of a noise silencer has been considered. This characteristic shows the reduction of noise generated by its source, in particular by the internal combustion engine’s exhaust system, at the control point as a silencer use result. Has been presented a mathematical description of the insertion losses, and have been considered parameters necessary for calculating this characteristic. Has been demonstrated the analytical dependence of impedance for the sound emission by the exhaust system’s end hole from the coefficient of acoustic waves reflection by this hole. The performed analysis of the widely used formulas for calculating the coefficient of sound reflection by the end hole has showed their insufficient accuracy for project designs performing. Have been proposed calculation dependences providing high accuracy for calculations of the reflection coefficient modulus, and the attached length of the channel end hole without a flange in the entire range of the existence of plane waves in it. It has been shown that the end correction of this hole at ka = 0 is 0.6127, and not 0.6133, as it was mistakenly believed until now in world acoustics. Has been proposed a method for calculation the exhaust noise source internal impedance. This method more accurately, in comparison with the already known ones, describes the acoustic processes in the internal combustion engine’s exhaust manifold, thanks to increases the accuracy of calculation the silencer acoustic efficiency, that allows develop the silencer at the early stages of the design of an automotive internal combustion engine.


Author(s):  
Lucas Konstantinoff ◽  
Lukas Möltner ◽  
Martin Pillei ◽  
Thomas Steiner ◽  
Thomas Dornauer ◽  
...  

In this study, the influence of the charge motion on the internal combustion in a spark ignition sewage gas-driven engine (150 kW) for combined heat and power units was investigated. For this purpose, the geometry of the combustion chamber in the immediate vicinity to the inlet valve seats was modified. The geometrical modification measures were conducted iteratively by integrative determination of the swirl motion on a flow bench, by laser-optical methods and consecutively by combustion analysis on a test engine. Two different versions of cylinder heads were characterized by dimensionless flow and swirl numbers prior to testing their on-engine performance. Combustion analysis was conducted with a cylinder pressure indication system for partial and full load, meeting the mandatory NOx limit of 500 mg m−3. Subsuming the flow bench results, the new valve seat design has a significant enhancing impact on the swirl motion but it also leads to disadvantages concerning the volumetric efficiency. A comparative consideration of the combustion rate delivers that the increased swirl motion results in a faster combustion, hence in a higher efficiency. In summary, the geometrical modifications close to the valve seat result in increased turbulence intensity. It was proven that this intensification raises the ratio of efficiency by 1.6%.


Author(s):  
Abdullah U. Bajwa ◽  
Mark Patterson ◽  
Taylor Linker ◽  
Timothy J. Jacobs

Abstract Gas exchange processes in two-stroke internal combustion engines, i.e. scavenging, remove exhaust gases from the combustion chamber and prepare the fuel-oxidizer mixture that undergoes combustion. A non-negligible fraction of the mixture trapped in the cylinder at the conclusion of scavenging is composed of residual gases from the previous cycle. This can cause significant changes to the combustion characteristics of the mixture by changing its composition and temperature, i.e. its thermodynamic state. Thus, it is vital to have accurate knowledge of the thermodynamic state of the post-scavenging mixture to be able to reliably predict and control engine performance, efficiency and emissions. Several simple-scavenging models can be found in the literature that — based on a variety of idealized interaction modes between incoming and cylinder gases — calculate the state of the trapped mixture. In this study, boundary conditions extracted from a validated 1-D predictive model of a single-cylinder two-stroke engine are used to gauge the performance of four simple scavenging models. It is discovered that the assumption of thermal homogeneity of the incoming and exiting gases is a major source of inaccuracy. A new non-isothermal multi-stage single-zone scavenging model is thus, proposed to address some of the shortcomings of the four models. The proposed model assumes that gas-exchange in cross-scavenged two-stroke engines takes place in three stages; an isentropic blowdown stage, followed by perfect-displacement and perfect-mixing stages. Significant improvements in the trapped mixture state estimates were observed as a result.


Author(s):  
W Zhuge ◽  
Y Zhang ◽  
X Zheng ◽  
M Yang ◽  
Y He

An advanced turbocharger simulation method for engine cycle simulation was developed on the basis of the compressor two-zone flow model and the turbine mean-line flow model. The method can be used for turbocharger and engine integrated design without turbocharger test maps. The sensitivities of the simulation model parameters on turbocharger simulation were analysed to determine the key modelling parameters. The simulation method was validated against turbocharger test data. Results show that the methods can predict the turbocharger performance with a good accuracy, less than 5 per cent error in general for both the compressor and the turbine. In comparison with the map-based extrapolation methods commonly used in engine cycle simulation tools such as GT-POWER®, the turbocharger simulation method showed significant improvement in predictive accuracy to simulate the turbocharger performance, especially in low-flow and low-operating-speed conditions.


Author(s):  
P A Bromnick ◽  
R J Pearson ◽  
D E Winterbone

A model has been developed for intercoolers which are used to reduce the temperature of the charge air in turbocharged internal combustion engines. The detailed theory for the intercooler model is presented. The behaviour of the intercooler is characterized by the relationship between the number of transfer units ( NTU) and the effectiveness (ε) of the intercooler, which is assumed to be that of a cross-flow heat exchanger. The structure of the code used to implement the model is presented and the model is applied to simulate the gas dynamics in a medium-speed turbocharged and intercooled diesel engine. The results show the predicted variation of pressure, temperature and mass flowrate across the intercooler and also the variation of intercooler effectiveness with mass flowrate.


Sign in / Sign up

Export Citation Format

Share Document