Numerical Investigation on LNG Injection in a SI-ICE

Author(s):  
Gianluca Pasini ◽  
Stefano Frigo ◽  
Marco Antonelli ◽  
Maria Berardi

Since the beginning of this century, Liquefied Natural Gas (LNG) has been attracting more and more attention as a cleaner energy alternative to other fossil fuels, mainly due to the possibility to transport it over longer distances than natural gas in pipelines and lower environmental impact than other liquid fuels. It is expected that this trend in the use of LNG will lead to steady increases in demand over the next few decades. At present, in the automotive sector, natural gas is employed as fuel in spark-ignited (SI) engines in the gas phase (CNG) adopting port-fuel injection system (PFI) in the intake manifold, with the main result of reducing CO2 emissions by up to 20%, compared with gasoline operation. However, SI engines which are operated in this manner suffer loss of peak torque and power due to a reduction in volumetric efficiency. Direct-Injection (DI) inside the cylinder can overcome this drawback by injecting CNG after intake valve closure. Another strategy could be the injection of natural gas in the liquid phase, both in PFI or DI mode. The injected fuel evaporation cools down the intake air; increasing the charge density with a substantial improvement in the engine volumetric efficiency and delivered power. However, at present, injection systems dedicated to cryogenic injection of natural gas are still in the prototype state. In the present study, the volumetric efficiency and performance of a turbocharged, LNG fuelled SI-ICE were numerically analysed both in the cases of DI and PFI modes and compared with the results of a conventional CNG system. Various fuel injection timings and injector position were analysed. The engine performance was evaluated by means of a one-dimensional model developed with the simulation program GT-Power, while the verification of the LNG-air mixture characteristics was carried out with the commercial code Aspen HYSIS. The numerical activity has shown that gaseous DI, before inlet valves closing, gives the worst result since methane, once injected into the cylinder, expands hindering the entry of air. On the other side, liquid PFI represents the best configuration to maximize the volumetric efficiency and therefore the engine power. All the technological issues related to a cryogenic liquid methane injection system were not taken into consideration in this study.

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4530 ◽  
Author(s):  
Gabriel Talero ◽  
Camilo Bayona-Roa ◽  
Giovanny Muñoz ◽  
Miguel Galindo ◽  
Vladimir Silva ◽  
...  

Aeronautic transport is a leading energy consumer that strongly contributes to greenhouse gas emissions due to a significant dependency on fossil fuels. Biodiesel, a substitution of conventional fuels, is considered as an alternative fuel for aircrafts and power generation turbine engines. Unfortunately, experimentation has been mostly limited to small scale turbines, and technical challenges remain open regarding operational safety. The current study presents the facility, the instrumentation, and the measured results of experimental tests in a 640 kW full-scale J69-T-25A turbojet engine, operating with blends of Jet A1 and oil palm biodiesel with volume contents from 0% to 10% at different load regimes. Findings are related to the fuel injection system, the engine thrust, and the emissions. The thrust force and the exhaust gas temperature do not expose a significant variation in all the operation regimes with the utilization of up to 10% volume content of biodiesel. A maximum increase of 36% in fuel consumption and 11% in injection pressure are observed at idle operation between B0 and B10. A reduction of the CO and HC emissions is also registered with a maximum variation at the cruise regime (80% Revolutions Per Minute—RPM).


2021 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Mega Nur Sasongko ◽  
Abdi Afifuddin Zuhri

Compressed Natural Gas (CNG) is an alternative renewable fuel gasoline replacement. However, due to the low heating value, the use of CNG in the engine will reduce its performance. The addition of hydrogen gas in CNG namely hydrogen-enriched compressed natural gas is expected to increase the power of the motor. This study aims to analyze the effect of hydrogen concentration on the performance of a CNG gasoline engine. The research was conducted on the engine with an indirect fuel injection system with a volume of 124,9 cc. The parameter of the engine that measured is torque, effective power, specific fuel consumption, and effective thermal efficiency. The results showed that the small percentage of hydrogen in CNG could increase the power of the gasoline engine. Power and efficiency reach a maximum of 10% hydrogen concentration. Increasing the proportion of hydrogen in CNG fuel above 10% will significantly reduce engine torque and power. Engine performance at optimal conditions with 10% hydrogen results in torque of 2.71 Kg.m at 670 rpm, effective power of 3.28 Ps at 1055 rpm, SFCe 0.17 Kg / Ps. Hours at 770 rpm and 33.62% effective thermal efficiency at 770 rpm


Author(s):  
R. Cipollone ◽  
M. Sughayyer

Mixture strength control system effectiveness depends on its capacity to deal with air and fuel transport processes inside the intake manifold: the prediction of air mass flow to the engine cylinders and the compensation for the fuel lag during engine transients. These issues are all likely to be of extreme importance with the transient air/fuel ratio control strategies. This paper introduces an innovative model-based air/fuel ratio control strategy for SI engines. It is based on a previously published modeling approach for the air dynamics inside intake manifolds, which is based on the formulation of the mass, momentum and energy conservation equations and named as Method Of Interconnected Capacities. The proposed strategy uses a fuel compensator that is based on a macroscopical modeling of the fuel film dynamical behavior inside the intake manifold, which is derived from the Aquino model. A wide range of severe transient tests obtained from the experimentation of a single-cylinder research engine (type AVL 5401), equipped with port-fuel injection system, is presented. The results obtained have proved the effectiveness of the proposed strategy in controlling the air/fuel ratio in SI engines in a better way compared to the traditional control systems.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4395
Author(s):  
T. M. Yunus Khan

The ever-increasing demand for transport is sustained by internal combustion (IC) engines. The demand for transport energy is large and continuously increasing across the globe. Though there are few alternative options emerging that may eliminate the IC engine, they are in a developing stage, meaning the burden of transportation has to be borne by IC engines until at least the near future. Hence, IC engines continue to be the prime mechanism to sustain transportation in general. However, the scarcity of fossil fuels and its rising prices have forced nations to look for alternate fuels. Biodiesel has been emerged as the replacement of diesel as fuel for diesel engines. The use of biodiesel in the existing diesel engine is not that efficient when it is compared with diesel run engine. Therefore, the biodiesel engine must be suitably improved in its design and developments pertaining to the intake manifold, fuel injection system, combustion chamber and exhaust manifold to get the maximum power output, improved brake thermal efficiency with reduced fuel consumption and exhaust emissions that are compatible with international standards. This paper reviews the efforts put by different researchers in modifying the engine components and systems to develop a diesel engine run on biodiesel for better performance, progressive combustion and improved emissions.


Author(s):  
Ripudaman Singh ◽  
Andrew Mansfield ◽  
Margaret Wooldridge

Emissions compliance during engine start-up conditions is a major obstacle for current automotive manufacturers across global markets. The challenges to meeting emissions targets are both due to increasingly stringent regulations and the difficulty in developing control strategies for a high degree-of-freedom and highly non-linear system. Online extremum-seeking (ES) methods offer a promising alternative to traditional optimization based on design-of-experiment based automotive calibration. With extremum-seeking methods, results from all prior experiments are used to intelligently and efficiently generate the next iteration of the control parameter(s). In this work, the applicability of the online extremum-seeking method is explored to optimize five performance variables (injection timing for two injection events, the injection fuel mass divided between the first and second injection events, air-fuel equivalence ratio and exhaust cam timing) to minimize brake specific fuel consumption while imposing different constraints on NOx emissions. The experiments were conducted using a production turbocharged four-cylinder gasoline engine with an advanced fuel injection system. The results show the utility of the ES strategy to quickly identify optimal control parameter combinations and the emissions and engine performance improvements during the calibration process. The results also demonstrate the dramatic benefit of the ES calibration strategy in terms of test time required.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2413 ◽  
Author(s):  
Lebedevas ◽  
Pukalskas ◽  
Daukšys ◽  
Rimkus ◽  
Melaika ◽  
...  

This paper presents a study on the energy efficiency and emissions of a converted high-revolution bore 79.5 mm/stroke 95 mm engine with a conventional fuel injection system for operation with dual fuel feed: diesel (D) and natural gas (NG). The part of NG energy increase in the dual fuel is related to a significant deterioration in energy efficiency (ηi), particularly when engine operation is in low load modes and was determined to be below 40% of maximum continuous rating. The effectiveness of the D injection timing optimisation was established in high engine load modes within the range of a co-combustion ratio of NG ≤ 0.4: with an increase in ηi, compared to D, the emissions of NOx+ HC decreased by 15% to 25%, while those of CO2 decreased by 8% to 16%; the six-fold CO emission increase, up to 6 g/kWh, was unregulated. By referencing the indicated process characteristics of the established NG phase elongation in the expansion stroke, the combustion time increase as well as the associated decrease in the cylinder excess air ratio (α) are possible reasons for the increase in the incomplete combustion product emission.


Author(s):  
Hongsheng Guo ◽  
W. Stuart Neill ◽  
Wally Chippior ◽  
Hailin Li ◽  
Joshua D. Taylor

Homogeneous charge compression ignition (HCCI) is an advanced low-temperature combustion technology being considered for internal combustion engines due to its potential for high fuel conversion efficiency and extremely low emissions of particulate matter and oxides of nitrogen (NOx). In its simplest form, HCCI combustion involves the auto-ignition of a homogeneous mixture of fuel, air, and diluents at low to moderate temperatures and high pressure. Previous research has indicated that fuel chemistry has a strong impact on HCCI combustion. This paper reports the preliminary results of an experimental and modeling study of HCCI combustion using n-heptane, a volatile hydrocarbon with well known fuel chemistry. A Co-operative Fuel Research (CFR) engine was modified by the addition of a port fuel injection system to produce a homogeneous fuel-air mixture in the intake manifold, which contributed to a stable and repeatable HCCI combustion process. Detailed experiments were performed to explore the effects of critical engine parameters such as intake temperature, compression ratio, air/fuel ratio, engine speed, turbocharging, and intake mixture throttling on HCCI combustion. The influence of these parameters on the phasing of the low-temperature reaction, main combustion stage, and negative temperature coefficient delay period are presented and discussed. A single-zone numerical simulation with detailed fuel chemistry was developed and validated. The simulations show good agreement with the experimental data and capture important combustion phase trends as engine parameters are varied.


Sign in / Sign up

Export Citation Format

Share Document