Segmentation and Removal of the Carolinas-Virginia Tube Reactor (CVTR) Moderator Tank

Author(s):  
Michael G. Anderson

Special tooling has been deployed to segment the Moderator Tank (MT) at the Carolinas-Virginia Tube Reactor (CVTR) Parr site near Jenkinsville, South Carolina. The MT or reactor vessel, the most activated component remaining on site which included over 1,000 Ci of activation products, has been segmented into sections to fit within three hardware liners and three custom boxes. This work has been completed in approximately 12 months from tool conception to final packaging with no spread of contamination, no generation of secondary wastes and minimizing personnel radiological exposure. With contact dose readings in excess of 90 R/hr, segmentation of the MT had to be performed remotely and with the assurance that the spread of contamination to otherwise clean areas of the reactor building did not occur. Additionally, since the MT was entombed within a bioshield not capable of containing water, cutting had to be performed dry without benefit of shielding typically provided by the water of a spent fuel pool. In addition, the component removal scope included the removal, packaging and disposal of other activated components including thermal shields and the steel liner from the internal face of the bioshield. Concept engineering began in January 2006. Tools were tested and delivered in May 2006. Segmentation was completed in December 2006, followed by the removal of the thermal shields and bioshield liner. The component removal work was completed without the spread of contamination, no generation of secondary waste and an exposure total of 17 person rem.

Author(s):  
Hakan Sterner ◽  
Dieter Rittscher

The 15-MWel prototype pilot reactor AVR is a pebble bed HTGR. It was designed in the late 50s and was connected to the grid end of 1967. After 21y of successful operation the reactor was shut down end of 1988. In 1994 the first decommissioning license was granted and work with defueling, dismantling and preparation of a Safe Enclosure started. The primary system is contaminated with the fission products Sr90 and Cs137 and the activation products are Co60, C14 and H3. Due to the large amounts of Sr and Cs bound to graphite dust, the dismantling of systems connected to the pressure vessel is very tedious. In 2003 the AVR company was restructured and the strategy of the decommissioning was changed from safe enclosure to green field, i.e. the complete direct dismantling of all facilities and clean up of the site. The highlight during the dismantling is the removal of the reactor vessel (diameter ca. 7.6m and length ca. 26m) in one piece. Before handling the reactor vessel it will be filled with low density cellular concrete. Subsequently the reactor building will be cut open and the reactor vessel (total weight ca. 2100Mg) lifted out and transported to an interim store.


Author(s):  
Zhixin Xu ◽  
Ming Wang ◽  
Binyan Song ◽  
WenYu Hou ◽  
Chao Wang

The Fukushima nuclear disaster has raised the importance on the reliability and risk research of the spent fuel pool (SFP), including the risk of internal events, fire, external hazards and so on. From a safety point of view, the low decay heat of the spent fuel assemblies and large water inventory in the SFP has made the accident progress goes very slow, but a large number of fuel assemblies are stored inside the spent fuel pool and without containment above the SFP building, it still has an unignored risk to the safety of the nuclear power plant. In this paper, a standardized approach for performing a holistic and comprehensive evaluation approach of the SFP risk based on the probabilistic safety analysis (PSA) method has been developed, including the Level 1 SFP PSA and Level 2 SFP PSA and external hazard PSA. The research scope of SFP PSA covers internal events, internal flooding, internal fires, external hazards and new risk source-fuel route risk is also included. The research will provide the risk insight of Spent Fuel Pool operation, and can help to make recommendation for the prevention and mitigation of SFP accidents which will be applicable for the SFP configuration risk management.


Author(s):  
Daogang Lu ◽  
Yu Liu ◽  
Shu Zheng

Free standing spent fuel storage racks are submerged in water contained with spent fuel pool. During a postulated earthquake, the water surrounding the racks is accelerated and the so-called fluid-structure interaction (FSI) is significantly induced between water, racks and the pool walls[1]. The added mass is an important input parameter for the dynamic structural analysis of the spent fuel storage rack under earthquake[2]. The spent fuel storage rack is different even for the same vendors. Some rack are designed as the honeycomb construction, others are designed as the end-tube-connection construction. Therefore, the added mass for those racks have to be measured for the new rack’s design. More importantly, the added mass is influenced by the layout of the rack in the spent fuel pool. In this paper, an experiment is carried out to measure the added mass by free vibration test. The measured fluid force of the rack is analyzed by Fourier analysis to derive its vibration frequency. The added mass is then evaluated by the vibration frequency in the air and water. Moreover, a two dimensional CFD model of the spent fuel rack immersed in the water tank is built. The fluid force is obtained by a transient analysis with the help of dynamics mesh method.


Author(s):  
Hao Qian ◽  
Li Yiguo ◽  
Peng Dan ◽  
Wu Xiaobo ◽  
Lu Jin ◽  
...  

In order to solve the problem that the current unloading operation will destroy the sealing performance of Miniature Neutron Source Reactor (MNSR) reactor vessel and the tightness can’t be restored, and to meet the application requirements that the original reactor vessel will be reloaded and operated after MNSR LEU conversion, the new unloading device is designed, which can be used without separation of reactor vessel. There has only one fuel assembly in MNSR. When the fuel assembly are unload for MNSR LEU conversion, the cover plate of the pool is removed, the cadmium string is put in, and the neutron detector is placed at first. After removing the drive mechanism and the control rod, and opening the small cover plate at the top of reactor vessel, the fuel assembly can be grabbed and unloaded by unloading tool only through the opening of the small top cover plate. The MNSR spent fuel has very high radioactivity. The auxiliary mechanical device can be used with unloading tools to realize operation in a long distance by lifting and level motion, which is convenient to shield and can reduce the works’ irradiation dose level effectively. Through calculation and analysis, the results show that the structure strength of unloading device is much larger than the actual load to ensure operation safety and reliability. The unloading device is easy to process and operate, and can be used in the practical operation of MNSR LEU conversion or decommissioning at home and abroad to simplify the operation steps and improve the working efficiency.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205228 ◽  
Author(s):  
Rosane Silva ◽  
Darcy Muniz de Almeida ◽  
Bianca Catarina Azeredo Cabral ◽  
Victor Hugo Giordano Dias ◽  
Isadora Cristina de Toledo e Mello ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 9-13
Author(s):  
David A. Hakobyan ◽  
Victor I. Slobodchuk

The problems of reprocessing and long-term storage of spent nuclear fuel (SNF) at nuclear power plants with RBMK reactors have not been fully resolved so far. For this reason, nuclear power plants are forced to search for new options for the disposal of spent fuel, which can provide at least temporary SNF storage. One of the possible solutions to this problem is to switch to compacted SNF storage in reactor spent fuel pools (SFPs). As the number of spent fuel assemblies (SFAs) in SFPs increases, a greater amount of heat is released. In addition, no less important is the fact that a place for emergency FA discharging should be provided in SFPs. The paper presents the results of a numerical simulation of the temperature conditions in SFPs both for compacted SNF storage and for emergency FA discharging. Several types of disturbances in normal SFP cooling mode are considered, including partial loss of cooling water and exposure of SFAs. The simulation was performed using the ANSYS CFX software tool. Estimates were made of the time for heating water to the boiling point, as well as the time for heating the cladding of the fuel elements to a temperature of 650 °С. The most critical conditions are observed in the emergency FA discharging compartment. The results obtained make it possible to estimate the time that the personnel have to restore normal cooling mode of the spent fuel pool until the maximum temperature for water and spent fuel assemblies is reached.


2019 ◽  
Vol 7 (3A) ◽  
Author(s):  
Claubia Pereira ◽  
Jéssica P. Achilles ◽  
Fabiano Cardoso ◽  
Victor F. Castro ◽  
Maria Auxiliadora F. Veloso

A spent fuel pool of a typical Pressurized Water Reactor (PWR) was evaluated for criticality studies when it uses reprocessed fuels. PWR nuclear fuel assemblies with four types of fuels were considered: standard PWR fuel, MOX fuel, thorium-uranium fuel and reprocessed transuranic fuel spiked with thorium. The MOX and UO2 benchmark model was evaluated using SCALE 6.0 code with KENO-V transport code and then, adopted as a reference for other fuels compositions. The four fuel assemblies were submitted to irradiation at normal operation conditions. The burnup calculations were obtained using the TRITON sequence in the SCALE 6.0 code package. The fuel assemblies modeled use a benchmark 17x17 PWR fuel assembly dimensions. After irradiation, the fuels were inserted in the pool. The criticality safety limits were performed using the KENO-V transport code in the CSAS5 sequence. It was shown that mixing a quarter of reprocessed fuel withUO2 fuel in the pool, it would not need to be resized 


2013 ◽  
Vol 479-480 ◽  
pp. 543-547
Author(s):  
Jong Rong Wang ◽  
Hao Tzu Lin ◽  
Wan Yun Li ◽  
Shao Wen Chen ◽  
Chun Kuan Shih

In the nuclear power plant (NPP) safety, the safety analysis of the NPP is very important work. In Fukushima NPP event, due to the earthquake and tsunami, the cooling system of the spent fuel pool failed and the safety issue of the spent fuel pool generated. In this study, the safety analysis of the Chinshan NPP spent fuel pool was performed by using TRACE and FRAPTRAN, which also assumed the cooling system of the spent fuel pool failed. There are two cases considered in this study. Case 1 is the no fire water injection in the spent fuel pool. Case 2 is the fire water injection while the water level of the spent fuel pool uncover the length of fuel rods over 1/3 full length. The analysis results of the case 1 show that the failure of cladding occurs in about 3.6 day. However, the results of case 2 indicate that the integrity of cladding is kept after the fire water injection.


Sign in / Sign up

Export Citation Format

Share Document