Conditional Release of Steel From Decommissioning in a Form of Reinforced Concrete

Author(s):  
Jozef Pritrsky ◽  
Miroslav Brodnan ◽  
Vladimir Necas

The paper deals with the conditional release of low-level radioactive steel from decommissioning in a form of reinforced concrete. The main goal was to determine limits for radionuclides concentration and calculate the annual dose for a member of a critical group of public, which should not exceed 10 μSv/year (according to IAEA Safety Guide RS-G-1.7). Corrosion is the principle mechanism of radionuclides release in this case; therefore effort was devoted to assess the time-dependent rate of steel reinforcement corrosion. It was assumed, that concrete is initially highly alkaline (with pH of 12 to 13) because of hydration products such as calcium hydroxide, which keeps the steel surface passive and protected from corrosion. However, carbonic acid resulting from carbon dioxide and water in the atmosphere can react with these products to produce calcium carbonate. This process is referred to as a “carbonation”, and leads after a period of time to significant reduction of the alkalinity (to pH as low as 8.5) followed by destruction of passive layer and starting corrosion of the embedded steel. The analytical principles and a set of input data have been implemented into a mathematical model developed by means of GoldSim software. The paper presents the results of mathematical simulation of corrosion process, which are compared with real measured values.

2021 ◽  
Vol 11 (15) ◽  
pp. 6772
Author(s):  
Charlotte Van Steen ◽  
Els Verstrynge

Corrosion of the reinforcement is a major degradation mechanism affecting durability and safety of reinforced concrete (RC) structures. As the corrosion process starts internally, it can take years before visual damage can be noticed on the surface, resulting in an overall degraded condition and leading to large financial costs for maintenance and repair. The acoustic emission (AE) technique enables the continuous monitoring of the progress of internal cracking in a non-invasive way. However, as RC is a heterogeneous material, reliable damage detection and localization remains challenging. This paper presents extensive experimental research aiming at localizing internal damage in RC during the corrosion process. Results of corrosion damage monitoring with AE are presented and validated on three sample scales: small mortar samples (scale 1), RC prisms (scale 2), and RC beams (scale 3). For each scale, the corrosion process was accelerated by imposing a direct current. It is found that the AE technique can detect damage earlier than visual inspection. However, dedicated filtering is necessary to reliably localize AE events. Therefore, AE signals were filtered by a newly developed post-processing protocol which significantly improves the localization results. On the smallest scale, results were confirmed with 3D micro-CT imaging, whereas on scales 2 and 3, results were compared with surface crack width measurements and resulting rebar corrosion levels.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiao-Chun Lu ◽  
Bin Guan ◽  
Bo-Fu Chen ◽  
Xin Zhang ◽  
Bo-bo Xiong

The existing studies of the corrosion of reinforced concrete have mainly focused on the interface area and chemical ion erosion, ignoring the specific service environment of the reinforced concrete. In this study, the effect of freeze-thaw damage was investigated via corrosion experiments under different freeze-thaw cycle conditions. Steel reinforcement corrosion mass, ultimate pull-out force, corrosion rate, and bond slippage were chosen as characteristic parameters in the experiments, and scanning electron microscopy (SEM) analysis was used to explain the mechanism of action of freeze-thaw damage on corrosion. The results showed that, under identical corrosion conditions, the mass of steel reinforcement corrosion and corrosion rate increased by 39.6% and 39.7% when comparing 200 freeze-thaw cycles to 0 cycles, respectively. The ultimate pull-out force and bond slippage after 200 freeze-thaw cycles decreased by 73% and 31%, respectively, compared with 0 freeze-thaw cycles. In addition, SEM analysis indicated that microstructure damage caused by freeze-thaw cycles accelerated the corrosion reaction and decreased cementitious properties, leading to decreasing ultimate pull-out force and bond slippage. The effect of freeze-thaw cycles and steel reinforcement corrosion on the macro mechanical properties of concrete is not a simple superposition.


ACS Omega ◽  
2018 ◽  
Vol 3 (7) ◽  
pp. 8212-8219 ◽  
Author(s):  
Dzmitry S. Firaha ◽  
Malte Döntgen ◽  
Benjamin Berkels ◽  
Kai Leonhard

2013 ◽  
Vol 837 ◽  
pp. 265-270 ◽  
Author(s):  
Vasile Constantinescu ◽  
Gheorghe Veniamin Bogus ◽  
Rares George Taran ◽  
Ioan Carcea

Concrete is a complex material of construction that enables the high compressive strength of natural stone to be sed in any configuration. In tension, however, concrete can be no stronger than the bond between the cured cement and the surfaces of the aggregate. This is generally much lower than the compressive strength of the concrete. Concrete is therefore frequently reinforced, usually with steel. When a system of steel bars or a steel mesh is incorporated in the concrete structure in such a way that the steel can support most of the tensile stresses and leave the immediately surrounding concrete comparatively free of tensile stress, then the complex is known as reinforced concrete. Corrosion of reinforcing steel in concrete leads to the premature failure of many structures exposed to harsh environments. Rust products form on the bar, expanding its volume and creating stress in the surrounding concrete. This leads to cracking and spalling, both of which can severely reduce the service life and strength of a member. Corrosion of reinforcing steel in concrete structures is one of the most expensive problems facing civil engineers in the world. The structural integrity of many bridges, overpasses, parking garages, and other concrete structures has been impaired by corrosion, and repairs are urgently required to ensure public safety. Corrosion-induced deterioration of reinforced concrete can be modelled in terms of three component steps: (1) time for corrosion initiation; (2) time, subsequent to corrosion initiation, for appearance of a crack on the external concrete surface (crack propagation); and (3) time for surface cracks to progress into further damage and develop into spalls, to the point where the functional service life, is reached. The two most common causes of reinforcement corrosion are: (i) localized breakdown of the passive film on the steel by chloride ions and (ii) general breakdown of passivity by neutralization of the concrete, predominantly by reaction with atmospheric carbon dioxide. Sound concrete is an ideal environment for steel but the increased use of deicing salts and the increased concentration of carbon dioxide in modern environments principally due to industrial pollution, has resulted in corrosion of the rebar becoming the primary cause of failure of this material. The scale of this problem has reached alarming proportions in various parts of the world. Corrosion in reinforced concrete structures is causing deterioration of our infrastructure. Structures in or near marine environments and transportation structures on which deicing salts are used are especially vulnerable. A widely promoted method for repairing damaged structures or for protecting structures in corrosive environments is the application of fiber-reinforced composite wraps over the surface of the structures elements.


2014 ◽  
Vol 61 (3) ◽  
pp. 158-165 ◽  
Author(s):  
Shamsad Ahmad

Purpose – The purpose of this paper was to explore the possibility of establishing an empirical correlation between concrete resistivity and reinforcement corrosion rate utilizing the experimental data generated by measuring corrosion current density of reinforced concrete specimens subjected to chloride-induced corrosion at different levels of concrete resistivity. Design/methodology/approach – To generate concrete resistivity vs corrosion current density data in a wide range, ten reinforced concrete specimens were prepared and allowed to corrode under severe chloride exposure. After significantly corroding the specimens, they were removed from the chloride exposure and were subjected to different moisture levels for achieving variation in the resistivity of concrete so that reasonably good number of resistivity vs corrosion rate data can be obtained. Resistivity and corrosion current density tests were conducted for all the ten specimens and their values were measured in wide ranges of 0.8-65 kΩ·cm and 0.08-11 μA/cm2, respectively. Findings – Data generated through this study were utilized to obtain an empirical relationship between concrete resistivity and corrosion current density. The trend of results obtained using the empirical correlation model developed in the present study was in close agreement with that obtained using a theoretical model reported in literature. Originality/value – The empirical correlation between concrete resistivity and reinforcement corrosion rate obtained under this work can be used for evaluation of reinforcement corrosion utilizing the resistivity values measured non-destructively.


Sign in / Sign up

Export Citation Format

Share Document