Dual-Stage Turbocharger Matching and Boost Control Options

Author(s):  
Byungchan Lee ◽  
Dohoy Jung ◽  
Dennis Assanis ◽  
Zoran Filipi

Diesel engines are gaining in popularity, penetrating even the luxury and sports vehicle segments that have traditionally been strongly favored gasoline engines as the performance and refinement of diesel engines have improved significantly in recent years. The introduction of sophisticated technologies such as common rail injection (CRI), advanced boosting systems such as variable geometry and multi-stage turbocharging, and exhaust gas after-treatment systems have renewed the interest in Diesel engines. Among the technical advancements of diesel engines, the multi-stage turbocharging is the key to achieve such high power density that is suitable for the luxury and sports vehicle applications. Single-stage turbocharging is limited to roughly 2.5 bar of boost pressure. In order to raise the boost pressure up to levels of 4 bar or so, another turbocharger must be connected in series further multiplying the pressure ratio. The dual-stage turbocharging, however, adds system complexity, and the matching of two turbochargers becomes very costly if it is to be done experimentally. This study presents a simulation-based methodology for dual-stage turbocharger matching through an iterative procedure predicting optimal configurations of compressors and turbines. A physics-based zero-dimensional Diesel engine system simulation with a dual-stage turbocharger is implemented in SIMULINK environment, allowing easy evaluation of different configurations and subsequent analysis of engine system performance. The simulation program is augmented with a turbocharger matching program and a turbomachinery scaling routine. The configurations considered in the study include a dual-stage turbocharging system with a bypass valve added to the high pressure turbine, and a system with a wastegate valve added to a low-pressure turbine. The systematic simulation study allows detailed analysis of the impact of each of the configurations on matching, boost characteristics and transient response. The configuration with the bypass valve across high pressure turbine showed better results in terms of both steady state engine torque and transient behavior.

Author(s):  
David Luquet ◽  
Francois Julienne ◽  
Aurélien Arntz ◽  
Eric Lippinois

Abstract To improve the fuel efficiency demanded by airlines and regulations, the turbomachinery industry is required to steadily enhance engine performances and numerical prediction capabilities. One of the solutions is the lean burn combustor which dramatically reduces NOx levels compared to rich one. However, one drawback of this technology is its impact on the High-pressure turbine due to large swirl and reduced cooling airflow, inducing large spatial and temporal variations in the turbine inlet condition. This can drastically change the operation of the turbine and our ability to model it using standard practice, usually RANS computation. To investigate this combustor-turbine interaction, the European Commission-funded project FACTOR (Full Aerothermal Combustor-Turbine interactiOns Research) was launched several years ago. A test rig of a combustor simulator coupled with a 1.5 stage turbine was built at a DLR facility. An extensive test campaign comprising 5 holes probes and infrared imaging was performed. These produced an array of aerodynamic quantities at different points of interest along the machine axis. With this project reaching its term by the end of 2017, results have been disseminated to the partners. This allows a comparison of measurements with RANS modeling on this configuration. The present paper deals with this analysis using several RANS computations and the results of the test campaign. First, single row computation of the Nozzle Guide Vane and rotor blade were performed. To impose the boundary conditions, the experimental map were azimuthally averaged to obtain profiles of total temperature, total pressure and flow angles. Second, the impact of some geometrical features was investigated. This was done using the recent addition of unstructured mesh capability in the elsA solver. Finally, multi-stage computations, both steady (mixing plane) and unsteady (sliding mesh) give an insight on the relative accuracy of these interstage models. All these computations were then used to investigate the behavior of this particular turbine. In addition to classical analysis using profiles of averaged data, the loss sources were identified by computing the viscous and thermal entropy production. This paves the way for a better understanding of the possibilities and limitations of our simulation capabilities.


Author(s):  
M. D. Barringer ◽  
K. A. Thole ◽  
M. D. Polanka

Within a gas turbine engine, the high pressure turbine vanes are subjected to very harsh conditions from the highly turbulent and hot gases exiting the combustor. The temperature and pressure fields exiting the combustor dictate the heat transfer and aero losses that occur in the turbine passages. To better understand these effects, the goal of this work is to develop an adjustable combustor exit profile simulator for the Turbine Research Facility (TRF) at the Air Force Research Laboratory (AFRL). The TRF is a high temperature, high pressure, short duration blow-down test facility that is capable of matching several aerodynamic and thermal non-dimensional engine parameters including Reynolds number, Mach number, pressure ratio, corrected mass flow, gas-to-metal temperature ratio, and corrected speed. The research objective was to design, install, and verify a non-reacting simulator device that provides representative combustor exit total pressure and temperature profiles to the inlet of the TRF turbine test section. This required the upstream section of the facility to be redesigned into multiple concentric annuli that serve the purpose of injecting high momentum dilution jets and low momentum film cooling jets into a central annular chamber, similar to a turbine engine combustor. The design of the simulator allows for variations in injection levels to generate turbulence and pressure profiles. It also can vary the dilution and film cooling temperatures to create a variety of temperature profiles consistent with real combustors. To date, the design and construction of the simulator device has been completed. All of the hardware has been trial fitted and the flow control shutter systems have been successfully installed and tested. Currently, verification testing is being performed to investigate the impact of the generated temperature, pressure, and turbulence profiles on turbine heat transfer and secondary flow development.


Author(s):  
S. Zerobin ◽  
C. Aldrian ◽  
A. Peters ◽  
F. Heitmeir ◽  
E. Göttlich

This paper presents an experimental study of the impact of individual high-pressure turbine purge flows on the main flow in a downstream turbine center frame duct. Measurements were carried out in a product-representative one and a half stage turbine test setup, installed in the Transonic Test Turbine Facility at Graz University of Technology. The rig allows testing at engine-relevant flow conditions, matching Mach, Reynolds, and Strouhal number at the inlet of the turbine center frame. The reference case features four purge flows differing in flow rate, pressure, and temperature, injected through the hub and tip, forward and aft cavities of the high-pressure turbine rotor. To investigate the impact of each individual cooling flow on the flow evolution in the turbine center frame, the different purge flows were switched off one-by-one while holding the other three purge flow conditions. In total, this approach led to six different test conditions when including the reference case and the case without any purge flow ejection. Detailed measurements were carried out at the turbine center frame duct inlet and outlet for all six conditions and the post-processed results show that switching off one of the rotor case purge flows leads to an improved duct performance. In contrast, the duct exit flow is dominated by high pressure loss regions if the forward rotor hub purge flow is turned off. Without the aft rotor hub purge flow, a reduction in duct pressure loss is determined. The purge flows from the rotor aft cavities are demonstrated to play a particularly important role for the turbine center frame aerodynamic performance. In summary, this paper provides a first-time assessment of the impact of four different purge flows on the flow field and loss generation mechanisms in a state-of-the-art turbine center frame configuration. The outcomes of this work indicate that a high-pressure turbine purge flow reduction generally benefits turbine center frame performance. However, the forward rotor hub purge flow actually stabilizes the flow in the turbine center frame duct and reducing this purge flow can penalize turbine center frame performance. These particular high-pressure turbine/turbine center frame interactions should be taken into account whenever high-pressure turbine purge flow reductions are pursued.


Author(s):  
Brian R. Green ◽  
Randall M. Mathison ◽  
Michael G. Dunn

The effect of rotor purge flow on the unsteady aerodynamics of a high-pressure turbine stage operating at design corrected conditions has been investigated both experimentally and computationally. The experimental configuration consisted of a single-stage high-pressure turbine with a modern film-cooling configuration on the vane airfoil as well as the inner and outer end-wall surfaces. Purge flow was introduced into the cavity located between the high-pressure vane and the high-pressure disk. The high-pressure blades and the downstream low-pressure turbine nozzle row were not cooled. All hardware featured an aerodynamic design typical of a commercial high-pressure ratio turbine, and the flow path geometry was representative of the actual engine hardware. In addition to instrumentation in the main flow path, the stationary and rotating seals of the purge flow cavity were instrumented with high frequency response, flush-mounted pressure transducers and miniature thermocouples to measure flow field parameters above and below the angel wing. Predictions of the time-dependent flow field in the turbine flow path were obtained using FINE/Turbo, a three-dimensional, Reynolds-Averaged Navier-Stokes CFD code that had the capability to perform both steady and unsteady analysis. The steady and unsteady flow fields throughout the turbine were predicted using a three blade-row computational model that incorporated the purge flow cavity between the high-pressure vane and disk. The predictions were performed in an effort to mimic the design process with no adjustment of boundary conditions to better match the experimental data. The time-accurate predictions were generated using the harmonic method. Part I of this paper concentrates on the comparison of the time-averaged and time-accurate predictions with measurements in and around the purge flow cavity. The degree of agreement between the measured and predicted parameters is described in detail, providing confidence in the predictions for flow field analysis that will be provided in Part II.


Author(s):  
Richard Celestina ◽  
Spencer Sperling ◽  
Louis Christensen ◽  
Randall Mathison ◽  
Hakan Aksoy ◽  
...  

Abstract This paper presents the development and implementation of a new generation of double-sided heat-flux gauges at The Ohio State University Gas Turbine Laboratory (GTL) along with heat transfer measurements for film-cooled airfoils in a single-stage high-pressure transonic turbine operating at design corrected conditions. Double-sided heat flux gauges are a critical part of turbine cooling studies, and the new generation improves upon the durability and stability of previous designs while also introducing high-density layouts that provide better spatial resolution. These new customizable high-density double-sided heat flux gauges allow for multiple heat transfer measurements in a small geometric area such as immediately downstream of a row of cooling holes on an airfoil. Two high-density designs are utilized: Type A consists of 9 gauges laid out within a 5 mm by 2.6 mm (0.20 inch by 0.10 inch) area on the pressure surface of an airfoil, and Type B consists of 7 gauges located at points of predicted interest on the suction surface. Both individual and high-density heat flux gauges are installed on the blades of a transonic turbine experiment for the second build of the High-Pressure Turbine Innovative Cooling program (HPTIC2). Run in a short duration facility, the single-stage high-pressure turbine operated at design-corrected conditions (matching corrected speed, flow function, and pressure ratio) with forward and aft purge flow and film-cooled blades. Gauges are placed at repeated locations across different cooling schemes in a rainbow rotor configuration. Airfoil film-cooling schemes include round, fan, and advanced shaped cooling holes in addition to uncooled airfoils. Both the pressure and suction surfaces of the airfoils are instrumented at multiple wetted distance locations and percent spans from roughly 10% to 90%. Results from these tests are presented as both time-average values and time-accurate ensemble averages in order to capture unsteady motion and heat transfer distribution created by strong secondary flows and cooling flows.


Author(s):  
Prasert Prapamonthon ◽  
Bo Yin ◽  
Guowei Yang ◽  
Mohan Zhang

Abstract To obtain high power and thermal efficiency, the 1st stage nozzle guide vanes of a high-pressure turbine need to operate under serious circumstances from burned gas coming out of combustors. This leads to vane suffering from effects of high thermal load, high pressure and turbulence, including flow-separated transition. Therefore, it is necessary to improve vane cooling performance under complex flow and heat transfer phenomena caused by the integration of these effects. In fact, these effects on a high-pressure turbine vane are controlled by several factors such as turbine inlet temperature, pressure ratio, turbulence intensity and length scale, vane curvature and surface roughness. Furthermore, if the vane is cooled by film cooling, hole configuration and blowing ratio are important factors too. These factors can change the aerothermal conditions of the vane operation. The present work aims to numerically predict sensitivity of cooling performances of the 1st stage nozzle guide vane under aerodynamic and thermal variations caused by three parameters i.e. pressure ratio, coolant inlet temperature and height of vane surface roughness using Computational Fluid Dynamics (CFD) with Conjugate Heat Transfer (CHT) approach. Numerical results show that the coolant inlet temperature and the vane surface roughness parameters have significant effects on the vane temperature, thereby affecting the vane cooling performances significantly and sensitively.


Author(s):  
Harjit S. Hura ◽  
Scott Carson ◽  
Rob Saeidi ◽  
Hyoun-Woo Shin ◽  
Paul Giel

This paper describes the engine and rig design, and test results of an ultra-highly loaded single stage high pressure turbine. In service aviation single stage HPTs typically operate at a total-to-total pressure ratio of less than 4.0. At higher pressure ratios or energy extraction the nozzle and blade both have regions of supersonic flow and shock structures which, if not mitigated, can result in a large loss in efficiency both in the turbine itself and due to interaction with the downstream component which may be a turbine center frame or a low pressure turbine. Extending the viability of the single stage HPT to higher pressure ratios is attractive as it enables a compact engine with less weight, and lower initial and maintenance costs as compared to a two stage HPT. The present work was performed as part of the NASA UEET (Ultra-Efficient Engine Technology) program from 2002 through 2005. The goal of the program was to design and rig test a cooled single stage HPT with a pressure ratio of 5.5 with an efficiency at least two points higher than the state of the art. Preliminary design tools and a design of experiments approach were used to design the flow path. Stage loading and through-flow were set at appropriate levels based on prior experience on high pressure ratio single stage turbines. Appropriate choices of blade aspect ratio, count, and reaction were made based on comparison with similar HPT designs. A low shock blading design approach was used to minimize the shock strength in the blade during design iterations. CFD calculations were made to assess performance. The HPT aerodynamics and cooling design was replicated and tested in a high speed rig at design point and off-design conditions. The turbine met or exceeded the expected performance level based on both steady state and radial/circumferential traverse data. High frequency dynamic total pressure measurements were made to understand the presence of unsteadiness that persists in the exhaust of a transonic turbine.


Author(s):  
D. S. Pascovici ◽  
K. G. Kyprianidis ◽  
F. Colmenares ◽  
S. O. T. Ogaji ◽  
P. Pilidis

This paper presents the use of Weibull formulation to the life analysis of different parts of the engine in order to estimate the cost of maintenance, the direct operating costs (DOC) and net present cost (NPC) of future type turbofan engines. The Weibull distribution is often used in the field of life data analysis due to its flexibility—it can mimic the behavior of other statistical distributions such as the normal and the exponential. The developed economic model is composed of three modules: a lifing module, an economic module and a risk module. The lifing module estimates the life of the high pressure turbine blades through the analysis of creep and fatigue over a full working cycle of the engine. The value of life calculated by the lifing is then taken as the baseline distribution to calculate the life of other important modules of the engine using the Weibull approach. Then the lower of the values of life of all the distributions is taken as time between overhaul (TBO), and used into the economic module calculations. The economic module uses the TBO together with the cost of labour and the cost of the engine (needed to determine the cost of spare parts) to estimate the cost of maintenance and DOC of the engine. In the present work five Weibull distributions are used for five important sources of interruption of the working life of the engine: Combustor, Life Limited Parts (LLP), High Pressure Compressor (HPC), General breakdowns and High Pressure Turbine (HPT). The risk analysis done in this work shows the impact of the breakdown of different parts of the engine on the NPC and DOC, the importance that each module of the engine has in its life, and how the application of the Weibull theory can help us in the risk assessment of future aero engines. A detailed explanation of the economic model is done in two other works (Pascovici et. al. [6] and Pascovici et. al. [7]), so in this paper only a general overview is done.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Brian R. Green ◽  
Randall M. Mathison ◽  
Michael G. Dunn

The detailed mechanisms of purge flow interaction with the hot-gas flow path were investigated using both unsteady computationally fluid dynamics (CFD) and measurements for a turbine operating at design corrected conditions. This turbine consisted of a single-stage high-pressure turbine and the downstream, low-pressure turbine nozzle row with an aerodynamic design equivalent to actual engine hardware and typical of a commercial, high-pressure ratio, transonic turbine. The high-pressure vane airfoils and inner and outer end walls incorporated state-of-the-art film cooling, and purge flow was introduced into the cavity located between the high-pressure vane and disk. The flow field above and below the blade angel wing was characterized by both temperature and pressure measurements. Predictions of the time-dependent flow field were obtained using a three-dimensional, Reynolds-averaged Navier–Stokes CFD code and a computational model incorporating the three blade rows and the purge flow cavity. The predictions were performed to evaluate the accuracy obtained by a design style application of the code, and no adjustment of boundary conditions was made to better match the experimental data. Part I of this paper compared the predictions to the measurements in and around the purge flow cavity and demonstrated good correlation. Part II of this paper concentrates on the analytical results, looking at the primary gas path ingestion mechanism into the cavity as well as the effects of the rotor purge on the upstream vane and downstream rotor aerodynamics and thermodynamics. Ingestion into the cavity is driven by high static pressure regions downstream of the vane, high-velocity flow coming off the pressure side of the vane, and the blade bow waves. The introduction of the purge flow is seen to have an effect on the static pressure of the vane trailing edge in the lower 5% of span. In addition, the purge flow is weak enough that upon exiting the cavity, it is swept into the mainstream flow and provides no additional cooling benefits on the platform of the rotating blade.


Author(s):  
Lars Högner ◽  
Matthias Voigt ◽  
Ronald Mailach ◽  
Marcus Meyer ◽  
Ulf Gerstberger

Abstract Modern high pressure turbine (HPT) blade design stands out due to high complexity comprising three-dimensional blade features, multi-passage cooling system (MPCS) and film cooling to allow for progressive thermodynamic process parameters. During the last decade, probabilistic design approaches have become increasingly important in turbomachinery to incorporate uncertainties such as geometric variations caused by manufacturing scatter. In part B of this two-part paper, real geometry effects are considered within a probabilistic finite element (FE) analysis that aims at sensitivity evaluation. The knowledge about the geometric variability is derived based on a blade population of more than 400 individuals by means of parametric models that are introduced in part A (cf. Högner et al. [1]). The HPT blade population is statistically assessed which allows for reliable sensitivity analysis and robustness evaluation taking the variability of the airfoil, profiled endwalls (PEW) at hub and shroud, wedge surfaces (WSF) and the MPCS into account. The probabilistic method — Monte-Carlo simulation (MCS) using an extended Latin Hypercube Sampling (eLHS) technique — is presented subsequently. Afterwards, the FE model that involves thermal, linear-elastic stress and creep analysis is described briefly. Based on this, the fully automated process chain involving CAD model creation, FE mesh morphing, FE analysis and post-processing is executed. Here, the mesh morphing process is presented involving a discussion of the mesh quality. The process robustness is assessed and quantified referring to the impact on input parameter correlation. Finally, the result quantities of the probabilistic FE simulation are evaluated in terms of sensitivities. For this purpose, regions of interest are determined, wherein the statistical analysis is conducted to achieve the sensitivity ranking. A significant influence of the considered geometric uncertainties onto mechanical output quantities is observed which motivates to incorporate these in modern design strategies or robust optimization.


Sign in / Sign up

Export Citation Format

Share Document