Water Single-Phase Fluid Flow and Heat Transfer in Capillary Tubes

Author(s):  
A. Bucci ◽  
G. P. Celata ◽  
M. Cumo ◽  
E. Serra ◽  
G. Zummo

This paper reports the results of an experimental investigation of fluid flow and single-phase heat transfer of water in stainless steel capillary tubes. Three tube diameters are tested: 172 μm, 290 μm and 520 μm, while the Reynolds number varying from 200 up to 6000. Fluid flow experimental results indicate that in laminar flow regime the friction factor is in good agreement with the Hagen-Poiseuille theory for Reynolds number below 800–1000. For higher values of Reynolds number, experimental data depart from the Hagen-Poiseuille law to the side of higher f values. The transition from laminar to turbulent regime occurs for Reynolds number in the range 1800–3000. This transition is found in good agreement with the well known flow transition for rough commercial tubes. Heat transfer experiments show that heat transfer correlations in laminar and turbulent regimes, developed for conventional size tubes, are not adequate for calculation of heat transfer coefficient in microtubes. In laminar flow the experimental values of heat transfer coefficient are generally higher than those calculated with the classical correlation, while in turbulent flow regime experimental data do not deviate significantly from classical heat transfer correlations. Deviation from classical heat transfer correlations increase as the channel diameter decrease.

Author(s):  
Gian Piero Celata

The objective of the present paper is to provide a general overview of the research carried out so far in single-phase heat transfer and flow in capillary (micro) pipes. Laminar flow and laminar-to-turbulent flow transition are analyzed in detail in order to clarify the discrepancies among the results obtained by different researchers. Experiments performed in the ENEA laboratory indicate that in laminar flow regime the friction factor is in good agreement with the Hagen-Poiseuille theory for Reynolds number below 600–800. For higher values of Reynolds number, experimental data depart from the Hagen-Poiseuille law to the side of higher f values. The transition from laminar-to-turbulent flow occurs for Reynolds number in the range 1800–2500. Heat transfer experiments show that heat transfer correlations in laminar and turbulent regimes, developed for conventional (macro) tubes, are not properly adequate for heat transfer rate prediction in microtubes.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 694 ◽  
Author(s):  
Jacek Sawicki ◽  
Krzysztof Krupanek ◽  
Wojciech Stachurski ◽  
Victoria Buzalski

Low-pressure carburizing followed by high-pressure quenching in single-piece flow technology has shown good results in avoiding distortions. For better control of specimen quality in these processes, developing numerical simulations can be beneficial. However, there is no commercial software able to simulate distortion formation during gas quenching that considers the complex fluid flow field and heat transfer coefficient as a function of space and time. For this reason, this paper proposes an algorithm scheme that aims for more refined results. Based on the physical phenomena involved, a numerical scheme was divided into five modules: diffusion module, fluid module, thermal module, phase transformation module, and mechanical module. In order to validate the simulation, the results were compared with the experimental data. The outcomes showed that the average difference between the numerical and experimental data for distortions was 1.7% for the outer diameter and 12% for the inner diameter of the steel element. Numerical simulation also showed the differences between deformations in the inner and outer diameters as they appear in the experimental data. Therefore, a numerical model capable of simulating distortions in the steel elements during high-pressure gas quenching after low-pressure carburizing using a single-piece flow technology was obtained, whereupon the complex fluid flow and variation of the heat transfer coefficient was considered.


1987 ◽  
Vol 109 (2) ◽  
pp. 108-110 ◽  
Author(s):  
S. Shakerin

Experiments were performed to evaluate the convective heat transfer coefficient for a flat plate mounted in a wooden model of a roof of a building. The experiments were carried out in a closed-circuit wind tunnel and included parametric adjustments of the roof tilt and Reynolds number, based on the length of the plate. The roof tilt was set at 0, 30, 45, 60, and 90 degrees and the Reynolds number ranged from 58,000 to 250,000. A transient, one lump, thermal approach was used for heat transfer calculations. Due to a separation bubble at the leading edge of the model, i.e., the roof, at angles of attack of less than 40 degrees, the flow became turbulent after reattachment. This resulted in a higher heat transfer than previously reported in the literature. At higher angles of attack, the flow was not separated at the leading edge and remained laminar. The heat transfer coefficient for higher angles of attack, i.e., α > 40 deg, was found to be approximately independent of the angle of attack and in good agreement with the previously published results.


Author(s):  
Sudipta Saha ◽  
Rajib Mahamud ◽  
Jamil Khan ◽  
Tanvir Farouk

Phase change driven heat transfer has been the topic of interest for a significantly long time. However, in recent years on demand sweating boosted evaporation which requires substantially less amount of the liquid medium has drawn attention as a possible way of increasing/supplementing heat transfer under convective conditions where the convective heat transfer coefficient has already reached its maximum value as well as where dry cooling is a desired objective. In this study, a numerical study is conducted to obtain insight into the ‘hybrid’ system where evaporation and convection both contribute to the heat transfer effect. The system modeled consists of evaporation of thin liquid (water) film under a laminar flow condition. The mathematical model employed consists of coupled conservation equations of mass, species, momentum and energy for the convection-evaporation domain (gaseous), with only mass and energy conservation being resolved in the liquid film domain. The evaporative mass flux is obtained from a modified Hertz-Knudsen relation which is a function of liquid-vapor interface temperature and pressure. A two-dimensional rectangular domain with a pre-prescribed thin liquid water film representative of an experiment is simulated with the developed model. The thin rectangular liquid film is heated by uniform heat flux and is placed in the convection-evaporation domain with an unheated starting length. A moving boundary mesh is applied via the“Arbitrary Lagrangian-Eulerian” technique to resolve the receding liquid interface resulting from evaporation. The prescribed relative displacement of the moving interface is calculated from the net mass flux due to evaporation and is governed by the principle of mass conservation. Simulations were conducted over a range of Reynolds number, heat flux conditions and liquid film thickness. The numerical predictions indicate that under convective-evaporative conditions the overall heat transfer coefficient increases significantly (∼factor of a five) in comparison to the purely forced convection scenario. An increase in the heat transfer coefficient is observed with Reynolds number and vice versa for film thickness. A critical Reynolds number is identified beyond which the heat transfer coefficient does not continue to increase significantly rather tends to plateau out.


Author(s):  
Ahmad K. Sleiti ◽  
J. S. Kapat

Experiments on triangular and rectangular array jet impingement and single phase spray cooling have been performed to determine the effect of both cooling techniques on heat transfer coefficient and the coolant mass flux required for a given cooling load. Experiments were performed with circular orifices and nozzles for different H/D values from 1.5 to 26 and Reynolds number range of 219 to 837, which is quite lower than the ranges used in widely used correlations. The coolant used was polyalphaolefin. For the custom fabricated orifices, commercial nozzles and conditions used in this study, both cooling techniques showed enhancement of heat transfer coefficient as H/D increases to a certain limit after which it starts to decrease. The heat transfer coefficient always increases with Reynolds number. In keeping with previous studies, single-phase spray cooling technique can provide the same heat transfer coefficient as jets at a slightly lower mass flux, but with a higher pressure head.


Author(s):  
Basant Singh Sikarwar ◽  
K. Muralidhar ◽  
Sameer Khandekar

Clusters of liquid drops growing and moving on physically or chemically textured lyophobic surfaces are encountered in drop-wise mode of vapor condensation. As opposed to film-wise condensation, drops permit a large heat transfer coefficient and are hence attractive. However, the temporal sustainability of drop formation on a surface is a challenging task, primarily because the sliding drops eventually leach away the lyophobicity promoter layer. Assuming that there is no chemical reaction between the promoter and the condensing liquid, the wall shear stress (viscous resistance) is the prime parameter for controlling physical leaching. The dynamic shape of individual droplets, as they form and roll/slide on such surfaces, determines the effective shear interaction at the wall. Given a shear stress distribution of an individual droplet, the net effect of droplet ensemble can be determined using the time averaged population density during condensation. In this paper, we solve the Navier-Stokes and the energy equation in three-dimensions on an unstructured tetrahedral grid representing the computational domain corresponding to an isolated pendant droplet sliding on a lyophobic substrate. We correlate the droplet Reynolds number (Re = 10–500, based on droplet hydraulic diameter), contact angle and shape of droplet with wall shear stress and heat transfer coefficient. The simulations presented here are for Prandtl Number (Pr) = 5.8. We see that, both Poiseuille number (Po) and Nusselt number (Nu), increase with increasing the droplet Reynolds number. The maximum shear stress as well as heat transfer occurs at the droplet corners. For a given droplet volume, increasing contact angle decreases the transport coefficients.


Author(s):  
Ahmet Selim Dalkiliç ◽  
Ali Celen ◽  
Mohamed M. Awad ◽  
Somchai Wongwises

Heat exchangers using in-tube condensation have great significance in the refrigeration, automotive and process industries. Effective heat exchangers have been rapidly developed due to the demand for more compact systems, higher energy efficiency, lower material costs and other economic incentives. Enhanced surfaces, displaced enhancement devices, swirl-flow devices and surface tension devices improve the heat transfer coefficients in these heat exchangers. This study is a critical review on the determination of the condensation heat transfer coefficient of pure refrigerants flowing in vertical and horizontal tubes. The authors’ previous publications on this issue, including the experimental, theoretical and numerical analyses are summarized here. The lengths of the vertical and horizontal test sections varied between 0.5 m and 4 m countercurrent flow double-tube heat exchangers with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The measured data are compared to theoretical and numerical predictions based on the solution of the artificial intelligence methods and CFD analyses for the condensation process in the smooth and enhanced tubes. The theoretical solutions are related to the design of double tube heat exchangers in refrigeration, air conditioning and heat pump applications. Detailed information on the in-tube condensation studies of heat transfer coefficient in the literature is given. A genetic algorithm (GA), various artificial neural network models (ANN) such as multilayer perceptron (MLP), radial basis networks (RBFN), generalized regression neural network (GRNN), and adaptive neuro-fuzzy inference system (ANFIS), and various optimization techniques such as unconstrained nonlinear minimization algorithm-Nelder-Mead method (NM), non-linear least squares error method (NLS), and Ansys CFD program are used in the numerical solutions. It is shown that the convective heat transfer coefficient of laminar and turbulent condensing film flows can be predicted by means of theoretical and numerical analyses reasonably well if there is a sufficient amount of reliable experimental data. Regression analysis gave convincing correlations, and the most suitable coefficients of the proposed correlations are depicted as compatible with the large number of experimental data by means of the computational numerical methods.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
R. Vidhya ◽  
T. Balakrishnan ◽  
B. Suresh Kumar

AbstractNanofluids are emerging two-phase thermal fluids that play a vital part in heat exchangers owing to its heat transfer features. Ceramic nanoparticles aluminium oxide (Al2O3) and silicon dioxide (SiO2) were produced by the sol-gel technique. Characterizations have been done through powder X-ray diffraction spectrum and scanning electron microscopy analysis. Subsequently, few volume concentrations (0.0125–0.1%) of hybrid Al2O3–SiO2 nanofluids were formulated via dispersing both ceramic nanoparticles considered at 50:50 ratio into base fluid combination of 60% distilled water (W) with 40% ethylene glycol (EG) using an ultrasonic-assisted two-step method. Thermal resistance besides heat transfer coefficient have been examined with cylindrical mesh heat pipe reveals that the rise of power input decreases the thermal resistance and inversely increases heat transfer coefficient about 5.54% and 43.16% respectively. Response surface methodology (RSM) has been employed for the investigation of heat pipe experimental data. The significant factors on the various convective heat transfer mechanisms have been identified using the analysis of variance (ANOVA) tool. Finally, the empirical models were developed to forecast the heat transfer mechanisms by regression analysis and validated with experimental data which exposed the models have the best agreement with experimental results.


Sign in / Sign up

Export Citation Format

Share Document