Slip Flow Structures in Confined Geometries

Author(s):  
Steffen Jebauer ◽  
Justyna Czerwinska

This paper presents various flow structures related to velocity slip and temperature jump in very low Reynolds number gas flow. The structures differ significantly from the ones observed in continuum regime for laminar flow, especially if the geometry has complex structure, which is very often the case in microfluidic devices. We are modelling the flow as a continuum Navier-Stokes gas flow with additional velocity slip and temperature jump boundary conditions for curved surfaces for slip flows with Knudsen numbers Kn < 0.1. For complex channel geometries with obstacles and curved walls vortex patterns are observed that are related to the thermal stress slip flow. This type of flow is induced only when non-uniform temperature distributions inside flow domains are present. The investigated geometries consist of one or more cylinder walls with diameters of up to a few 100 μm placed inside of confined microchannels, with all setups being two-dimensional. In gaseous microdevices the resulting complex flow patterns can be utilised to enhance mixing or heat transfer.

Author(s):  
H. D. Madhawa Hettiarachchi ◽  
Mihajlo Golubovic ◽  
William M. Worek

Slip-flow and heat transfer in rectangular microchannels are studied numerically for constant wall temperature (T) and constant wall heat flux (H2) boundary conditions under thermally developing flow. Navier-Stokes and energy equations with velocity slip and temperature jump at the boundary are solved using finite volume method in a three dimensional cartesian coordinate system. A modified convection-diffusion coefficient at the wall-fluid interface is defined to incorporate the temperature-jump boundary condition. Validity of the numerical simulation procedure is stabilized. The effect of rarefaction on heat transfer in the entrance region is analyzed in detail. The velocity slip has an increasing effect on the Nusselt (Nu) number whereas temperature jump has a decreasing effect, and the combined effect could result increase or decrease in the Nu number. For the range of parameters considered, there could be high as 15% increase or low as 50% decrease in fully developed Nu is plausible for T thermal boundary condition while it could be high as 20% or low as 35% for H2 thermal boundary condition.


2010 ◽  
Vol 133 (2) ◽  
Author(s):  
Tomasz Lewandowski ◽  
Tomasz Ochrymiuk ◽  
Justyna Czerwinska

Due to the existence of a velocity slip and temperature jump on the solid walls, the heat transfer in microchannels significantly differs from the one in the macroscale. In our research, we have focused on the pressure driven gas flows in a simple finite microchannel geometry, with an entrance and an outlet, for low Reynolds (Re<200) and low Knudsen (Kn<0.01) numbers. For such a regime, the slip induced phenomena are strongly connected with the viscous effects. As a result, heat transfer is also significantly altered. For the optimization of flow conditions, we have investigated various temperature gradient configurations, additionally changing Reynolds and Knudsen numbers. The entrance effects, slip flow, and temperature jump lead to complex relations between flow behavior and heat transfer. We have shown that slip effects are generally insignificant for flow behavior. However, two configuration setups (hot wall cold gas and cold wall hot gas) are affected by slip in distinguishably different ways. For the first one, which concerns turbomachinery, the mass flow rate can increase by about 1% in relation to the no-slip case, depending on the wall-gas temperature difference. Heat transfer is more significantly altered. The Nusselt number between slip and no-slip cases at the outlet of the microchannel is increased by about 10%.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Zhenyu Liu ◽  
Zhiyu Mu ◽  
Huiying Wu

In this paper, a lattice Boltzmann (LB) model is established to simulate the gaseous fluid flow and heat transfer in the slip regime under the curved boundary condition. A novel curved boundary treatment is proposed for the LB modeling, which is a combination of the nonequilibrium extrapolation scheme for the curved boundary and the counter-extrapolation method for the macroscopic variables on the curved gas–solid interface. The established numerical model can accurately predict the velocity slip and temperature jump of the microscale gas flow on the curved surface, which agrees well with the analytical solution for the microcylindrical Couette flow and heat transfer. Then, the slip flow and the heat transfer over the single microcylinder are numerically studied in this work. It shows that the velocity slip and the temperature jump are obviously influenced by the Knudsen number and the Reynolds number, and the local Nusselt number depends on which gas rarefaction effect (velocity slip or temperature jump) is dominant. An increase in the Prandtl number leads to a decrease in the temperature jump, which enhances the heat transfer on the microcylinder surface. The numerical simulation of the flow and heat transfer over two microcylinders in tandem configuration are carried out to investigate the wake interference effect. The results show that the slip flow and heat transfer characteristics of the downstream microcylinder are influenced by the wake region behind the upstream cylinder as the spacing is small.


2012 ◽  
Vol 16 (1) ◽  
pp. 119-132 ◽  
Author(s):  
Snezana Milicev ◽  
Nevena Stevanovic

An analytical solution for the non-isothermal two-dimensional compressible gas flow in a slider microbearing with different temperatures of walls is presented in this paper. The slip flow is defined by the continuity, Navier-Stokes and energy continuum equations, along with the velocity slip and the temperature jump first order boundary conditions. Knudsen number is in the range of 10-3-10-1, which corresponds to the slip flow. The ratio between the exit microbearing height and the microbearing length is taken to be a small parameter. Moreover, it is assumed that the microbearing cross section varies slowly, which implies that all physical quantities vary slowly in x-direction. The model solution is treated by developing a perturbation scheme. The first approximation corresponds to the continuum flow conditions, while the second one involves the influence of rarefaction effect. The analytical solutions of the pressure, velocity and temperature for moderately high Reynolds numbers are presented here. For these flow conditions the inertia, convection, dissipation and rate at which work is done in compressing the element of fluid are also presented in the second approximation.


2021 ◽  
Vol 10 (1) ◽  
pp. 118-127
Author(s):  
Amit Parmar ◽  
Rakesh Choudhary ◽  
Krishna Agrawal

The present study explores the slip flow and heat transfer induced by a radially surface with MHD Carreau nanofluid. In addition, the effects of temperature jump, non-linear radiation and the dependent zero mass flux also taken into account. This study also considers the cross-diffusion effect on temperature and concentration governing profiles. Appropriate transformations are engaged in order to acquire nonlinear differential equations (ODEs) from the partial differential system, their solutions are obtained by Runge-Kutta 4th order with shooting scheme in MATLAB. The impact of pertinent flow parameters such as first and second order velocity slip parameter, temperature jump, magnetic parameter, heat source, radiation parameter, melting surface parameter, temperature ratio parameter on dimensionless velocity, temperature and concentration profiles achieved graphically as well as local skin friction, Nusselt number and Sherwood number are demonstrated in the form of Table. first order velocity slip parameter (slip1) on f′, Θ and Φ profile fields. With an increment in the velocity slip first order parameter (slip1) we have perceived a fall in the momentum boundary layer and concentration profiles and a growth in the fluid temperature field.


Author(s):  
Van Huyen Vu ◽  
Benoît Trouette ◽  
Quy Dong TO ◽  
Eric Chénier

Purpose This paper aims to extend the hybrid atomistic-continuum multiscale method developed by Vu et al. (2016) to study the gas flow problems in long microchannels involving density variations. Design/methodology/approach The simulation domain is decomposed into three regions: the bulk where the continuous Navier–Stokes and energy equations are solved, the neighbourhood of the wall simulated by molecular dynamics and the overlap region which connects the macroscopic variables (density, velocity and temperature) between the two former regions. For the simulation of long micro/nanochannels, a strategy with multiple molecular blocks all along the fluid/solid interface is adopted to capture accurately the macroscopic velocity and temperature variations. Findings The validity of the hybrid method is shown by comparisons with a simplified analytical model in the molecular region. Applications to compressible and condensation problems are also presented, and the results are discussed. Originality/value The hybrid method proposed in this paper allows cost-effective computer simulations of large-scale problems with an accurate modelling of the transfers at small scales (velocity slip, temperature jump, thin condensation films, etc.).


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Stéphane Colin

Accurate modeling of gas microvection is crucial for a lot of MEMS applications (microheat exchangers, pressure gauges, fluidic microactuators for active control of aerodynamic flows, mass flow and temperature microsensors, micropumps, and microsystems for mixing or separation for local gas analysis, mass spectrometers, vacuum, and dosing valves…). Gas flows in microsystems are often in the slip flow regime, characterized by a moderate rarefaction with a Knudsen number of the order of 10−2–10−1. In this regime, velocity slip and temperature jump at the walls play a major role in heat transfer. This paper presents a state of the art review on convective heat transfer in microchannels, focusing on rarefaction effects in the slip flow regime. Analytical and numerical models are compared for various microchannel geometries and heat transfer conditions (constant heat flux or constant wall temperature). The validity of simplifying assumptions is detailed and the role played by the kind of velocity slip and temperature jump boundary conditions is shown. The influence of specific effects, such as viscous dissipation, axial conduction and variable fluid properties is also discussed.


Author(s):  
Oktay Baysal ◽  
Alim Rustem Aslan

Fluid flows in micro devices span the entire Knudsen (Kn) number regime. Depending on the Kn range, a full continuum or a full free-molecular analysis may be applicable. In the present study, flows in the Kn range of 10−3 to 10−1 are considered and they are modeled using a conventional Navier-Stokes solver. Its boundary conditions, however, have been modified to account for the slip velocity and the temperature jump conditions encountered in these micro-sized geometries. The computations have been performed for straight micro channels, a micro backward facing step, and a micro filter. The present results are then compared with analytical formulae and other computations available in the literature. The results indicate that the rarefaction and compressibility effects present in these micro devices have been accurately predicted. In the case of slip flow, the separation is found to occur at a higher Reynolds number compared to the corresponding no-slip flow case. As the next step of the study, micro synthetic jets will be computed and the optimal cavity actuator geometries will be sought for desired flow deflections.


2006 ◽  
Vol 128 (6) ◽  
pp. 1181-1191 ◽  
Author(s):  
V. Huijnen ◽  
L. M. T. Somers ◽  
R. S. G. Baert ◽  
L. P. H. de Goey ◽  
C. Olbricht ◽  
...  

The prediction performance of two computational fluid dynamics codes is compared to each other and to experimental data of a complex swirling and tumbling flow in a practical complex configuration. This configuration consists of a flow in a production-type heavy-duty diesel engine head with 130-mm cylinder bore. One unsteady Reynolds-averaged Navier-Stokes (URANS)-based simulation and two large-eddy simulations (LES) with different inflow conditions have been performed with the KIVA-3V code. Two LES with different resolutions have been performed with the FASTEST-3D code. The parallelization of the this code allows for a more resolved mesh compared to the KIVA-3V code. This kind of simulations gives a complete image of the phenomena that occur in such configurations, and therefore represents a valuable contribution to experimental data. The complex flow structures gives rise to an inhomogeneous turbulence distribution. Such inhomogeneous behavior of the turbulence is well captured by the LES, but naturally damped by the URANS simulation. In the LES, it is confirmed that the inflow conditions play a decisive role for all main flow features. When no particular treatment of the flow through the runners can be made, the best results are achieved by computing a large part of the upstream region, once performed with the FASTEST-3D code. If the inflow conditions are tuned, all main complex flow structures are also recovered by KIVA-3V. The application of upwinding schemes in both codes is in this respect not crucial.


Sign in / Sign up

Export Citation Format

Share Document