Measurements of Sheath Temperature Profiles in Bruce LVRF Bundles Under Post-Dryout Heat Transfer Conditions in Freon

Author(s):  
Y. Guo ◽  
D. E. Bullock ◽  
I. L. Pioro ◽  
J. Martin

An experimental program has been completed to study the behaviour of sheath wall temperatures in the Bruce Power Station Low Void Reactivity Fuel (shortened hereafter to Bruce LVRF) bundles under post-dryout (PDO) heat-transfer conditions. The experiment was conducted with an electrically heated simulator of a string of nine Bruce LVRF bundles, installed in the MR-3 Freon heat transfer loop at the Chalk River Laboratories (CRL), Atomic Energy of Canada Limited (AECL). The loop used Freon R-134a as a coolant to simulate typical flow conditions in CANDU® nuclear power stations. The simulator had an axially uniform heat flux profile. Two radial heat flux profiles were tested: a fresh Bruce LVRF profile and a fresh natural uranium (NU) profile. For a given set of flow conditions, the channel power was set above the critical power to achieve dryout, while heater-element wall temperatures were recorded at various overpower levels using sliding thermocouples. The maximum experimental overpower achieved was 64%. For the conditions tested, the results showed that initial dryout occurred at an inner-ring element at low flows and an outer-ring element facing internal subchannels at high flows. Dry-patches (regions of dryout) spread with increasing channel power; maximum wall temperatures were observed at the downstream end of the simulator, and immediately upstream of the mid-bundle spacer plane. In general, maximum wall temperatures were observed at the outer-ring elements facing the internal subchannels. The maximum water-equivalent temperature obtained in the test, at an overpower level of 64%, was significantly below the acceptable maximum temperature, indicating that the integrity of the Bruce LVRF will be maintained at PDO conditions. Therefore, the Bruce LVRF exhibits good PDO heat transfer performance.

Author(s):  
Rama R. Goruganthu ◽  
David Bethke ◽  
Shawn McBride ◽  
Tom Crawford ◽  
Jonathan Frank ◽  
...  

Abstract Spray cooling is implemented on an engineering tool for Time Resolved Emission measurements using a silicon solid immersion lens to achieve high spatial resolution and for probing high heat flux devices. Thermal performance is characterized using a thermal test vehicle consisting of a 4x3 array of cells each with a heater element and a thermal diode to monitor the temperature within the cell. The flip-chip packaged TTV is operated to achieve uniform heat flux across the die. The temperature distribution across the die is measured on the 4x3 grid of the die for various heat loads up to 180 W with corresponding heat flux of 204 W/cm2. Using water as coolant the maximum temperature differential across the die was about 30 °C while keeping the maximum junction temperature below 95 °C and at a heat flux of 200 W/cm2. Details of the thermal performance of spray cooling system as a function of flow rate, coolant


2021 ◽  
pp. 875608792110258
Author(s):  
Azhar Ali ◽  
Dil Nawaz Khan Marwat ◽  
Aamir Ali

Flows and heat transfer over stretching/shrinking and porous surfaces are studied in this paper. Unusual and generalized similarity transformations are used for simplifying governing equations. Current model includes all previous cases of stretched/shrunk flows with thermal effects discussed so far. Moreover, we present three different cases of thermal behavior (i) prescribed surface temperature (ii) Variable/uniform convective heat transfer at plat surface and (iii) prescribed variable/uniform heat flux. Stretching/shrinking velocity Uw(x), porosity [Formula: see text], heat transfer [Formula: see text], heat flux [Formula: see text] and convective heat transfer at surface are axial coordinate dependent. Boundary layer equations and boundary conditions are transformed into nonlinear ODEs by introducing unusual and generalized similarity transformations for the variables. These simplified equations are solved numerically. Final ODEs represent suction/injection, stretching/shrinking, temperature, heat flux, convection effects and specific heat. This current problem encompasses all previous models as special cases which come under the scope of above statement (title). The results of classical models are scoped out as a special case by assigning proper values to the parameters. Numerical result shows that the dual solutions can be found for different possible values of the shrinking parameter. A stability analysis is accomplished and apprehended in order to establish a criterion for determining linearly stable and physically compatible solutions. The significant features and diversity of the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat transfer from a uniformly heated sheet of variable (uniform) thickness with variable (uniform) stretching/shrinking and injection/suction velocities.


1996 ◽  
Vol 118 (3) ◽  
pp. 592-597 ◽  
Author(s):  
T. S. Zhao ◽  
P. Cheng

An experimental and numerical study has been carried out for laminar forced convection in a long pipe heated by uniform heat flux and subjected to a reciprocating flow of air. Transient fluid temperature variations in the two mixing chambers connected to both ends of the heated section were measured. These measurements were used as the thermal boundary conditions for the numerical simulation of the hydrodynamically and thermally developing reciprocating flow in the heated pipe. The coupled governing equations for time-dependent convective heat transfer in the fluid flow and conduction in the wall of the heated tube were solved numerically. The numerical results for time-resolved centerline fuid temperature, cycle-averaged wall temperature, and the space-cycle averaged Nusselt number are shown to be in good agreement with the experimental data. Based on the experimental data, a correlation equation is obtained for the cycle-space averaged Nusselt number in terms of appropriate dimensionless parameters for a laminar reciprocating flow of air in a long pipe with constant heat flux.


Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper we reported an advanced structure, the Piranha Pin Fin (PPF), for microchannel flow boiling. Fluid flow and heat transfer performance were evaluated in detail with HFE7000 as working fluid. Surface temperature, pressure drop, heat transfer coefficient and critical heat flux (CHF) were experimentally obtained and discussed. Furthermore, microchannels with different PPF geometrical configurations were investigated. At the same time, tests for different flow conditions were conducted and analyzed. It turned out that microchannel with PPF can realize high-heat flux dissipation with reasonable pressure drop. Both flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performance. This study provided useful reference for further PPF design in microchannel for flow boiling.


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
V. V. Dharaiya ◽  
S. G. Kandlikar

Study of fluid flow characteristics at microscale is gaining importance with shrinking device sizes. Better understanding of fluid flow and heat transfer in microchannels will have important implications in electronic chip cooling, heat exchangers, MEMS, and microfluidic devices. Due to short lengths employed in microchannels, entrance header effects can be significant and need to be investigated. In this work, three dimensional model of microchannels, with aspect ratios (α = a/b) ranging from 0.1 to 10, are numerically simulated using CFD software tool fluent. Heat transfer effects in the entrance region of microchannel are presented by plotting average Nusselt number as a function of nondimensional axial length x*. The numerical simulations with both circumferential and axial uniform heat flux (H2) boundary conditions are validated for existing data set for four wall heat flux case. Large numerical data sets are generated in this work for rectangular cross-sectional microchannels with heating on three walls, two opposing walls, one wall, and two adjacent walls under H2 boundary condition. This information can provide better understanding and insight into the transport processes in the microchannels. Although the results are seen as relevant in microscale applications, they are applicable to any sized channels. Based on the numerical results obtained for the whole range, generalized correlations for Nusselt numbers as a function of channel aspect ratio are presented for all the cases. The predicted correlations for Nusselt numbers can be very useful resource for the design and optimization of microchannel heat sinks and other microfluidic devices.


Sign in / Sign up

Export Citation Format

Share Document