Experimental Measurements of Eddy Current Signal From SG Tubes of Fast Breeder Reactor Covered by a Thin Sodium Layer Using a SG Mock-Up

Author(s):  
Toshihiko Yamaguchi ◽  
Ovidiu Mihalache ◽  
Masashi Ueda ◽  
Shinya Miyahara

In Fast Breeder Reactors (FBR) which are sodium cooled, the steam generator (SG) heat exchanger tubes separate the low pressure sodium flowing in the SG vessel with the high pressure water-steam in tubes. During In-Service Inspection (ISI), sodium is first drained and then SG tubes are cooled down to the room temperature. After sodium draining, due to the high temperature (more than 500 °C), sodium adheres to SG tubes and structures around (SG support plates, welds) in a thin layer, filling eventually the gaps between SG support plates and tubes. During ISI, SG tubes are inspected for cracks and corrosions using differential eddy currents (EC) probes. Due to the high electrical conductivity of sodium adhering to the outer SG tube surface, the eddy current testing (ECT) signal modifies, in accord with sodium layer thickness or sodium deposits located on the outer SG tube surface. The sodium wetting properties depends on several factors as: material surface, temperature and sodium wetting time. The effect of sodium adhering to the outer SG tube on ECT signals were measured using a small mock-up tank (2 m high and 0.7 m in diameter) in which were introduced two SG tubes similar with the ones used in the Monju FBR (one tube is ferromagnetic and made of 2.25Cr–1Mo alloy, while the other one is made of SUS321 and is austenitic). Defects, SG support plates (on both helical and straight part of the tube) and welds were added to tubes and the ECT signal was measured before and after sodium draining. Variations in the sodium layer thickness and consequently its effect on ECT signals were measured by filling and draining the tank three times in order to recreate each time new layers of sodium. The paper describes the experimental conditions and the ECT results for both types of SG tubes by comparing the defects, SG support plates and weld signals before and after draining of sodium. Additionally, sodium structures were examined visually using a VideoScope camera, confirming the recorded ECT signals. The paper also presents details about sodium layer thickness measurements in several parts of SG tubes (near defect, SP, weld, bend, helical tube, straight tube) by scratching and collecting the sodium on a small area of 20mm×20mm. The volume of sodium drops is also estimated. The measurement results showed that there are significant differences in the sodium layer thickness depending on the SG tube material.

2011 ◽  
Vol 295-297 ◽  
pp. 1660-1664
Author(s):  
Yun Chao Diao ◽  
Yan Yan Jiang ◽  
Shi Kai Wang ◽  
Cheng Yu Wang

The float glass was polished by acid solution (HF/H2SO4) under ultrasonic wave. The surface morphologies before and after acid etching were observed by metallographic microscope. The thickness of acid etching was measured by thickness tester, and the strength before and after acid etching was investigated via material surface and interface performance tester. The experimental conditions, such as the amount of HF and H2SO4, the temperature of acid etching and the time of acid etching were optimized under ultrasonic wave ( f =40 KHz, P=125 W) by orthogonal design test. The suitable conditions were 10% for HF, 15 min for acid etching time, 30% for H2SO4and 25 °C for acid etching temperature, and thus the strength of float glass increased from 89.68 Mpa to 302.25 Mpa. The optimum thickness for acid etching was about 40 μm. The microscopic pictures showed that the surface defects of the glass surface such as scratch and pit weakened obviously or disappeared.


Author(s):  
Long Thanh Cung ◽  
Nam Hoang Nguyen ◽  
Pierre Yves Joubert ◽  
Eric Vourch ◽  
Pascal Larzabal

Purpose The purpose of this paper is to propose an approach, which is easy to implement, for estimating the thickness of the air layer that may separate metallic parts in some aeronautical assemblies, by using the eddy current method. Design/methodology/approach Based on an experimental study of the coupling of a magnetic cup core coil sensor with a metallic layered structure (consisting of first metal layer/air layer/second metal layer), which is confirmed by finite element modelling simulations, an inversion technique relying on a polynomial forward model of the coupling is proposed to estimate the air layer thickness. The least squares and the nonnegative least squares algorithms are applied and analysed to obtain the estimation results. Findings The choice of an appropriate inversion technique to optimize the estimation results is dependent on the signal-to-noise ratio of measured data. The obtained estimation error is smaller than a few percent, for both simulated and experimental data. The proposed approach can be used to estimate both the air layer thickness and the second metal layer thickness simultaneously/separately. Originality/value This model-based approach is easy to implement and available to all types of eddy current sensors.


2020 ◽  
pp. 54-58
Author(s):  
S. M. Plotnikov

The division of the total core losses in the electrical steel of the magnetic circuit into two components – losses dueto hysteresis and eddy currents – is a serious technical problem, the solution of which will effectively design and construct electrical machines with magnetic circuits having low magnetic losses. In this regard, an important parameter is the exponent α, with which the frequency of magnetization reversal is included in the total losses in steel. Theoretically, this indicator can take values from 1 to 2. Most authors take α equal to 1.3, which corresponds to the special case when the eddy current losses are three times higher than the hysteresis losses. In fact, for modern electrical steels, the opposite is true. To refine the index α, an attempt was made to separate the total core losses on the basis that the hysteresis component is proportional to the first degree of the magnetization reversal frequency, and the eddy current component is proportional to the second degree. In the article, the calculation formulas of these components are obtained, containing the values of the total losses measured in idling experiments at two different frequencies, and the ratio of these frequencies. It is shown that the rational frequency ratio is within 1.2. Presented the graphs and expressions to determine the exponent α depending on the measured no-load losses and the frequency of magnetization reversal.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1757
Author(s):  
Yesica Vicente-Martínez ◽  
Manuel Caravaca ◽  
Antonio Soto-Meca ◽  
Miguel Ángel Martín-Pereira ◽  
María del Carmen García-Onsurbe

This paper presents a novel procedure for the treatment of contaminated water with high concentrations of nitrates, which are considered as one of the main causes of the eutrophication phenomena. For this purpose, magnetic nanoparticles functionalized with silver (Fe3O4@AgNPs) were synthesized and used as an adsorbent of nitrates. Experimental conditions, including the pH, adsorbent and adsorbate dose, temperature and contact time, were analyzed to obtain the highest adsorption efficiency for different concentration of nitrates in water. A maximum removal efficiency of 100% was reached for 2, 5, 10 and 50 mg/L of nitrate at pH = 5, room temperature, and 50, 100, 250 and 500 µL of Fe3O4@AgNPs, respectively. The characterization of the adsorbent, before and after adsorption, was performed by energy dispersive X-ray spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller analysis and Fourier-transform infrared spectroscopy. Nitrates can be desorbed, and the adsorbent can be reused using 500 µL of NaOH solution 0.01 M, remaining unchanged for the first three cycles, and exhibiting 90% adsorption efficiency after three regenerations. A deep study on equilibrium isotherms reveals a pH-dependent behavior, characterized by Langmuir and Freundlich models at pH = 5 and pH = 1, respectively. Thermodynamic studies were consistent with physicochemical adsorption for all experiments but showed a change from endothermic to exothermic behavior as the temperature increases. Interference studies of other ions commonly present in water were carried out, enabling this procedure as very selective for nitrate ions. In addition, the method was applied to real samples of seawater, showing its ability to eliminate the total nitrate content in eutrophized waters.


2021 ◽  
Vol 11 (4) ◽  
pp. 1710
Author(s):  
Jinwook Lee ◽  
Hyo-Sun Kim ◽  
Donik Ku ◽  
Jihun Lim ◽  
Minkyu Jung ◽  
...  

Membrane-based vacuum dehumidification technology is currently being actively studied. In most studies, the performance of the membrane-based systems is evaluated under the assumption that the membrane can achieve ideal separation, which results in ideal coefficient of performance (COP) values. However, the performance factors for membranes vary depending on the experimental conditions and measurement methods. Therefore, relevant values can only be calculated if the data are measured in an environment close to that of the application conditions. The cup measurement method is a simple method to measure the permeability, however, there are limitations regarding adding variables during the experiment. To overcome these limitations, a new experimental device was constructed that combines pressurized cell with the cup method. Using the device, the performance of polyethylene-amide-bonded dense membranes was evaluated under conditions where absolute pressure differentials occurred before and after the membrane, such as in air conditioner dehumidification systems.


2008 ◽  
Vol 575-578 ◽  
pp. 1299-1304 ◽  
Author(s):  
Jaw Kuen Shiau ◽  
Der Ming Ma ◽  
Min Jou

This paper discusses the magnetic drag force resulting from the relative motion of a permanent magnet moving along a finite dimensional conducting plate. The image method with imaginary eddy currents is investigated. Boundary conditions are established to ensure that the eddy currents vanished at the boundaries of the conducting plate. Magnetic drag force is computed based on the eddy current distributions using Lorentz force law. A test system is built to demonstrate the magnetic brakes arose from the electromagnetic interactions.


1989 ◽  
Vol 111 (2) ◽  
pp. 209-214 ◽  
Author(s):  
J. A. Tichy ◽  
K. A. Connor

The properties of magnetic bearings, particularly those based on repulsive forces due to eddy currents, are determined by a complex mixture of electrical and mechanical length and time scales. A perturbation solution for the magnetic field structure based on careful ordering of these parameters has permitted the effects of realistic gap geometries to be analyzed. The load capacity of eddy current journal bearings is found to be somewhat larger than previously predicted in an earlier paper which used magnetic fields based on constant gap size. The present results may be of interest to those concerned with calculating eddy currents in conventional attractive magnetic bearings.


Author(s):  
T. Kokkinis ◽  
R. E. Sandstro¨m ◽  
H. T. Jones ◽  
H. M. Thompson ◽  
W. L. Greiner

A number of spars are being installed in deepwater areas in the Gulf of Mexico (GoM), which are subject to loop / eddy current conditions and must be designed for Vortex-Induced Motion (VIM). This paper shows how recent advances in VIM prediction enabled an efficient and effective mooring design solution for the existing Genesis classic spar, which is installed in Green Canyon Block 205 in the GOM. The solution may also be applicable to new spar designs. During the Gulf of Mexico Millennium Eddy Current event in April 2001, the Genesis spar platform underwent vortex induced motions (VIM) which were greater than anticipated during the design of the mooring & riser systems. Analysis showed that if such large motions were to occur in higher currents in the range of the 100-year event, they could cause significant fatigue damage, and could lead to peak tensions in excess of design allowables. After a comprehensive evaluation of potential solutions, Stepped Line Tensioning (SLT) was determined to be the best approach for restoring the platform’s original mooring capacity on technical, cost and schedule grounds. SLT did not require extensive redesign of the existing mooring system of the spar. Furthermore, SLT provided a means to improve mooring integrity on an interim basis, while completing details for permanent implementation. Under SLT, the pretensions of the mooring lines are adjusted based on forecast currents in order to keep the platform below the VIM lock-in threshold at all times and for all eddy/loop current conditions up to and including the 100-year condition. High Reynolds number model tests conducted with a new test methodology were used to get a reliable prediction of the spar’s VIM response for this evaluation.


1996 ◽  
Vol 80 (2) ◽  
pp. 452-457 ◽  
Author(s):  
K. Vandenberghe ◽  
N. Gillis ◽  
M. Van Leemputte ◽  
P. Van Hecke ◽  
F. Vanstapel ◽  
...  

This study aimed to compare the effects of oral creatine (Cr) supplementation with creatine supplementation in combination with caffeine (Cr+C) on muscle phosphocreatine (PCr) level and performance in healthy male volunteers (n = 9). Before and after 6 days of placebo, Cr (0.5 g x kg-1 x day-1), or Cr (0.5 g x kg-1 x day-1) + C (5 mg x kg-1 x day-1) supplementation, 31P-nuclear magnetic resonance spectroscopy of the gastrocnemius muscle and a maximal intermittent exercise fatigue test of the knee extensors on an isokinetic dynamometer were performed. The exercise consisted of three consecutive maximal isometric contractions and three interval series of 90, 80, and 50 maximal voluntary contractions performed with a rest interval of 2 min between the series. Muscle ATP concentration remained constant over the three experimental conditions. Cr and Cr+C increased (P < 0.05) muscle PCr concentration by 4-6%. Dynamic torque production, however, was increased by 10-23% (P < 0.05) by Cr but was not changed by Cr+C. Torque improvement during Cr was most prominent immediately after the 2-min rest between the exercise bouts. The data show that Cr supplementation elevates muscle PCr concentration and markedly improves performance during intense intermittent exercise. This ergogenic effect, however, is completely eliminated by caffeine intake.


Sign in / Sign up

Export Citation Format

Share Document