The RCM Technique Application in NPP Operation and Design Stage

Author(s):  
Yang Lifei ◽  
Jiang Hong

The national nuclear safety regulation commands that the safety, reliability and economy of the NPP must be considered in design and operation stage. In order to reach the goal, the paper firstly introduces how to use the RCM technique to make preventive maintenance programs to ensure the safety and reliability of the NPP which is in service or under construction, and then elaborates how to take the RCM technique into design in the early phase, to promote the safety and reliability of the NPP. It has been considered that RCM technique shows a positive role in the whole process, not only improving the maintenance manage level, but also the safety and reliability at the design stage.

2014 ◽  
Vol 6 ◽  
pp. 829850
Author(s):  
Li Changyou ◽  
Liu Haiyang ◽  
Guo Song ◽  
Zhang Yimin ◽  
Li Zhenyuan

A lot of mechanical parts are subject to failure due to the deterioration. Usually the preventive maintenance is taken to ensure the safety and reliability. Therefore, it is very important to study the gradual reliability design of the mechanical part for improving the gradual reliability of the mechanical system under the condition of considering the preventive maintenance. Beta distribution is employed to describe the randomness of the mechanical part state after the preventive maintenance. The deterioration process of the mechanical part is modeled using the nonstationary Gamma process. The gradual reliability model before the first preventive maintenance is proposed according to the gradual failure principle and using the initial state distribution and the properties of Gamma process. Then, the gradual reliability model between any two times of preventive maintenance is also derived. Subsequently, the sensitivity equations of the proposed gradual reliability model to each parameter are given. The application process and practicality of the proposed approach are described by a numerical example. This work solved the problem where the maintenance has not been well considered in the reliability design of the mechanical part and contributed to the theory and method of improving the safety and reliability operation of the mechanical system.


2021 ◽  
Author(s):  
Zhipeng Feng ◽  
Liwen Deng ◽  
Xuan Huang ◽  
Pingchuan Shen ◽  
Shuai Liu ◽  
...  

Abstract Flow-induced vibration is an important issue related to the safety and reliability of nuclear reactor, which need to be analyzed and evaluated in the design stage. In order to obtain the input loads and key parameters used in the calculation of flow-induced vibration of reactor vessel internals (RVIs) that need to satisfy the engineering requirements. The typical RVIs are selected as the research object, and the fluid exciting force characteristics are studied based on the computational fluid dynamics methods. The results show that the fluid exciting force acting on the RVIs is a wide-band stochastic process. For upper internal, the largest pressure fluctuation occurs at the guide tubes and support columns located near the outlet. Therefore, it is necessary to pay more attention to these guide tubes and support columns in response analysis. As for core barrel, the root mean square value of the pressure fluctuation changes drastically at the inlet and outlet location. For lower internal, the lower flow field of RVIs is relatively disordered, and its pressure fluctuation possesses irregular characteristics. Each component of lower internal need to be considered in analysis and evaluation.


2018 ◽  
Vol 182 ◽  
pp. 02063 ◽  
Author(s):  
Vladimir Kekelidze ◽  
Alexander Kovalenko ◽  
Richard Lednicky ◽  
Victor Matveev ◽  
Igor Meshkov ◽  
...  

The NICA (Nuclotron-based Ion Collider fAcility) is the new international research facility under construction at the Joint Institute for Nuclear Research (JINR) in Dubna. The main targets of the facility are the following: 1) study of hot and dense baryonic matter at the energy range of the maximum baryonic density; 2) investigation of nucleon spin structure and polarization phenomena; 3) development of JINR accelerator facility for high energy physics research based on the new collider of relativistic ions from protons to gold and polarized protons and deuterons as well with the maximum collision energy of sqrt(sNN) ~11GeV (Au79+ +Au79+) and ~ 27 GeV (p+p). Two collider detector setups MPD and SPD are foreseen. The setup BM@N (Baryonic Matter at Nuclotron) is commissioned for data taken at the existing Nuclotron beam fixed target area. The MPD construction is in progress whereas the SPD is still at the beginning design stage. An average luminosity of the collider is expected at the level of 1027 cm-2 s-1 for Au (79+) and 1032 cm-2 s-1 for polarized protons at 27 GeV. The status of NICA design and construction work is briefly described below.


2021 ◽  
pp. 12-25
Author(s):  
David Toke ◽  
Geoffrey Chun-Fung Chen ◽  
Antony Froggatt ◽  
Richard Connolly

2018 ◽  
Vol 191 ◽  
pp. 01003 ◽  
Author(s):  
Alexander Kovalenko ◽  
Vladimir Kekelidze ◽  
Richard Lednicky ◽  
Viktor Matveev ◽  
Igor Meshkov ◽  
...  

The NICA (Nuclotron-based Ion Collider fAcility) is the new international research facility under construction at the Joint Institute for Nuclear Research (JINR) in Dubna. The main targets of the facility are the following: 1) study of hot and dense baryonic matter at the energy range of the maximum baryonic density; 2) investigation of nucleon spin structure and polarization phenomena; 3) development of JINR accelerator facility for high energy physics research based on the new collider of relativistic ions from protons to gold and polarized protons and deuterons as well with the maximum collision energy of √SNN ~11GeV (Au79+ +Au79+) and ~ 27 GeV (p+p). Two collider detector setups MPD and SPD are foreseen. The setup BM@N (Baryonic Matter at Nuclotron) is commissioned for data taken at the existing Nuclotron beam fixed target area. The MPD construction is in progress whereas the SPD is still at the beginning design stage. An average luminosity of the collider is expected at the level of 1027 cm-2 s-1 for Au79+ and 1032 cm-2 s-1 for polarized protons at 27 GeV. The status of NICA design and construction work is briefly described below.


2019 ◽  
Vol 284 ◽  
pp. 09005
Author(s):  
Sławomir Onopiuk ◽  
Adam Stolarski

In this paper the issues associated with correct design of hall buildings has been presented. Large span roof structures require a particularly careful approach to design issues. In this paper examples of two building hall were presented. In the first example, the construction disaster occurred, while in the second of presented buildings due to the changes introduced while construction has been protected against such disaster. The first of the analyzed cause concerns storage hall, whose roof structure has been destroyed due to heavy rainfall. The main cause of this disaster was the malfunction of vacuum roof drainage system compounded by a number of design errors. Mentioned errors were not eliminated, during construction, despite the additional investor supervision, which was independent of parties involved in a construction process. The second case concerns the structure of a sports hall, which was built next to the existing school. Under construction of the hall building, the contractor and the supervision inspector, in conjunction with the designer, introduced a number of modifications of the structure to prevent the disaster. These modifications were a direct result of errors at the design stage, which were eliminated under the construction works. Based on analyzed cases, the scope of diagnostics, which should be performed during the operation of hall buildings with large roof areas, was determined.


2013 ◽  
Vol 416-417 ◽  
pp. 2066-2071
Author(s):  
Guo Xiang He

The paper describe the EAM function by proposing the main modules and major business processes, abstracting the main business processes.it implements preventive maintenance of assets, assets track, the whole process of life-cycle management based on the equipment,asset account and treat management maintenance as the core, the submission, approval,implementation of work order as main line. EAM can effectively improve the efficiency of equipment maintenance, reduce maintenance and repair costs, improve asset reliability and value.


Author(s):  
K J Kim ◽  
S T Won ◽  
Y H Lee ◽  
D S Bae ◽  
C W Sung ◽  
...  

The automotive industry has shown a growing interest in tube hydroforming during recent years. The advantages of hydroforming (less thinning, a more efficient manufacturing process, etc.) can, for instance, be combined with the high strength of extra-high-strength steels, which are usually less formable, to produce structural automotive components which exhibit lower weight and improved service performance. Design and production of tubular components require knowledge about tube material and forming behaviour during hydroforming and how the hydroforming operation itself should be controlled. These issues are studied analytically in the present paper. In this study, the whole process of rear subframe parts development by tube hydroforming using steel material having a tensile strength of 440MPa is presented. At the part design stage, it requires a feasibility study and process design assisted by computer aided engineering to confirm hydroformability in detail. The effects of parameters such as internal pressure, axial feeding, and geometry shape in the automotive rear subframe by the hydroforming process were carefully investigated. The overall possibility of hydroformable rear subframe parts could be examined by cross-sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending and hydroforming. In addition, all the components of a prototyping tool are designed and interference with a press is examined from the point of geometry and thinning.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012039
Author(s):  
K Gradeci ◽  
M Sletnes

Abstract A DOE (Design of Experiments) is the laying out of a detailed experimental plan in advance of doing the experiment. Optimal DOEs maximize the amount of information that can be obtained for a given amount of experimental effort. The traditional DOE methodology is waterfall-type methodology implying a sequential and linear life-cycle process. The success of the experiment and usefulness of the results are highly dependent on the initial experimental setup and assumptions, and does not allow to go back and change something that was not well-documented or thought upon in the design stage. The fast-changing software development industry have made it understandable that the traditional waterfall methodology for developing systems, which follows similar patters to the traditional DOE, lacks the agility required for developing robust systems. These limitations have triggered the development of agile: a type of incremental model of software development based on principles that focuses more on flexible responses to change, instead of in-depth planning at the design stage. This paper proposes the hybrid-agile DOE methodology – a methodology that incorporates agile principles in traditional waterfall DOE methodologies – to design effective experimental layouts that allow for improvement during the experimental trial process. The methodology is applied to the natural ageing of adhesives tapes for building applications. This methodology can overcome traditional DOE, by adding agility in the whole process, especially in cases where the investigated products lack prior information and are characterised by large variability.


Sign in / Sign up

Export Citation Format

Share Document