Testing the Impact on Emergency Diesel Performance of Water in Diesel Fuel

Author(s):  
Robert Cryer ◽  
Mark O’Connell

This paper focuses on testing results of the impact of water contamination in diesel fuel on the ability of an emergency diesel generator (EDG) to successfully start and operate during an emergency. This testing program resulted from the discovery of degraded vent pipes on diesel fuel feed tanks that could have allowed rain water to enter and collect at the bottom of the diesel fuel system and potentially prevent satisfactory engine start-up and operation. The nuclear regulator notified the nuclear plant of a potential yellow finding. The initial analysis effort focused on the use of diesel engine combustion software (Ricardo’s WAVE© 1D engine performance simulation software). Two medium-speed diesel engine models were analyzed with added water content ranging from 10% to 40% water in the diesel fuel. The analyses demonstrated that the engines could start and operate with those percentages of water in the fuel, but that the engine output would experience a power loss or derate proportional to the water content. The regulator was not convinced that the analysis was sufficient. The validity of the analytical findings above was demonstrated by full-scale tests conducted by MPR Associates on a large diesel engine. To accomplish this, Entergy, the nuclear power plant owner constructed a simulation of the diesel fuel supply system at a facility having the same make and model EDG. Water was introduced into the diesel fuel day tank by two different approaches; slow trickle flow and large slugs of water. These conditions simulated either a steady rainfall while the EDG was operating or a large volume of water collected in the system while the EDG was in standby. Under both water contamination scenarios, which consisted of more than 50 hours of testing, the diesel engine and generator set responded with negligible loss of frequency or voltage. Further, the engine was confirmed to have undergone no increased wear or degradation as a result of the high levels of water in the combustion chambers. Following a detailed review of the test program and the successful results, the regulator concluded that neither a non-cited violation nor a penalty was warranted.

2013 ◽  
Vol 860-863 ◽  
pp. 1703-1709 ◽  
Author(s):  
Xian Jun Hou ◽  
Shu Chen ◽  
Zhi'en Liu

A calculation model of turbocharged diesel engine was developed based on one-dimension simulation software GT-power,which can provide a steady boundary condition for the flow field analysis of EGR system.The three-dimension simulation software Fluent was applied in establishing the flow field model of the air-intake system under different air inlet position to analize the distribution of the exhaust gas,and then obtained the impact of the EGRs air-inlet position to uniformity of EGR system, thereby we could acquire the parameters which achieves the best maching between the EGR system and the diesel engine, it also provided a reference for engine performance optimization.


2014 ◽  
Vol 607 ◽  
pp. 588-593 ◽  
Author(s):  
Amir Aziz ◽  
Ahmad Fitri Yusof ◽  
Rizalman Mamat ◽  
W.N. Azeem

An emulsion of biodiesel and water is one of the possible approaches that have been used to overcome diesel engine pollution. In this work, the performance and emission characteristics of a 4-cylinder diesel engine using pure diesel, biodiesel B20 and emulsified biodiesel were investigated. Emulsified biodiesel containing 5 % and 10 % water were utilize for the engine tests. During the experimental work, the engine was set-up at 2500 rpm and 20 % to 60 % loads. The result shows the reduction in NOx formation when the water content in emulsified biodiesel increased from 5 % to 10%. For the performance, there were no significant differences between the engine break powers measured for emulsified biodiesel containing 5% water and diesel fuel.


2021 ◽  
Vol 13 (14) ◽  
pp. 7688
Author(s):  
Asif Afzal ◽  
Manzoore Elahi M. Soudagar ◽  
Ali Belhocine ◽  
Mohammed Kareemullah ◽  
Nazia Hossain ◽  
...  

In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402098840
Author(s):  
Mohammed S Gad ◽  
Sayed M Abdel Razek ◽  
PV Manu ◽  
Simon Jayaraj

Experimental work was done to examine the impact of diesel fuel with alumina nanoparticles on combustion characteristics, emissions and performance of diesel engine. Alumina nanoparticles were mixed with crude diesel in various weight fractions of 20, 30, and 40 mg/L. The engine tests showed that nano alumina addition of 40 ppm to pure diesel led to thermal efficiency enhancement up to 5.5% related to the pure diesel fuel. The average specific fuel consumption decrease about neat diesel fuel was found to be 3.5%, 4.5%, and 5.5% at dosing levels of 20, 30, and 40 ppm, respectively at full load. Emissions of smoke, HC, CO, and NOX were found to get diminished by about 17%, 25%, 30%, and 33%, respectively with 40 ppm nano-additive about diesel operation. The smaller size of nanoparticles produce fuel stability enhancement and prevents the fuel atomization problems and the clogging in fuel injectors. The increase of alumina nanoparticle percentage in diesel fuel produced the increases in cylinder pressure, cylinder temperature, heat release rate but the decreases in ignition delay and combustion duration were shown. The concentration of 40 ppm alumina nanoparticle is recommended for achieving the optimum improvements in the engine’s combustion, performance and emission characteristics.


Author(s):  
F. Daneshvar ◽  
N. Jahani ◽  
M. B. Shafii

In this experimental study, a four stroke diesel engine was conducted to investigate the effect of adding water-based ferrofluid to diesel fuel on engine performance. To our knowledge, Magnetic nanoparticles had not been used before. To this end, emulsified diesel fuels of 0, 0.4, and 0.8 water-based ferrofluid/Diesel ratios by volume were used as fuel. The ferrofluid used in this study was a handmade water-based ferrofluid prepared by the authors. The results show that adding water-based ferrofluid to diesel fuel has a perceptible effect on engine performance, increasing the brake thermal efficiency relatively up to 12%, and decreasing the brake specific fuel consumption relatively up to 11% as compared to diesel fuel. In addition, the results indicate that increasing ferrofluid concentration will magnify the results. Furthermore, it was found that magnetic nanoparticles can be collected at the engine exhaust using magnetic bar.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


Author(s):  
Maria V. Culmone ◽  
Nicolás Garcia-Rosa ◽  
Xavier Carbonneau

Transient effects are important features of engine performance calculations. The aim of this paper is to analyze a new, fully transient model implemented using the PRopulsion Object Oriented Simulation Software (PROOSIS) for a civil, short range turbofan engine. A transient turbofan model, including the mechanical inertia effect has been developed in PROOSIS. Specific physical effects such as heat soakage, mass storage, blade tip clearance and combustion delay have been implemented in the relevant components of PROOSIS to obtain a fully transient model. Since a large number of components are concerned by all the transient effects, an influence study is presented to determine which are the most critical effects, and in which components. Inertia represents the relevant phenomenon, followed by thermal effects, combustion delay and finally mass storage. The comparison with experimental data will provide a first validation of the model. Finally a sensitivity study is reported to assess the impact of uncertain knowledge of key input parameters in the response time prediction accuracy.


2014 ◽  
Vol 18 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Hasan Yamik

Biodiesel is an alternative fuel for diesel engines which doesn?t contain pollutants and sulfur; on the contrary it contains oxygen. In addition, both physical and chemical properties of sunflower oil methyl ester (SME) are identical to diesel fuel. Conversely, diesel and biodiesel fuels are widely used with some additives to reduce viscosity, increase the amount of cetane, and improve combustion efficiency. This study uses diesel fuel, SME and its mixture with aviation fuel JetA-1 which are widely used in the aviation industry. . Fuel mixtures were used in 1-cylinder, 4-stroke diesel engine under full load and variable engine speeds. In this experiment, engine performance and emission level are investigated. As a conclusion, as the JetA-1 ratio increases in the mixture, lower nitrogen oxide (NOx) emission is measured. Also, specific fuel consumption is lowered.


Sign in / Sign up

Export Citation Format

Share Document