Piping Vibration and Vibration Damage Prevention Through Screening of Dynamic Susceptibility

Author(s):  
Lingfu Zeng ◽  
Lennart G. Jansson ◽  
Alexander Börjesson

This paper continues our recent discussion on piping vibration and practical measures for preventing vibration-related damage in nuclear power industries. Our emphasis is on an empirical approach, which attempts to estimate a so-called “dynamic susceptibility” at various locations in a piping system. This approach uses a dynamic susceptibility factor (DS), which is a quotient of the modal stress to the modal velocity, as an indicator of the risk levels of vibration to measure the vibration sensitivity for excitation sources in a given frequency interval of particular interest. In the present paper, Benchmark examples tested by the general purpose finite element program ANSYS, and commercial piping programs CAEPIPE and PIPESTRESS, are presented and the potential of using DS parameters as a screening tool for determining “potentially-large” alternating stresses is illustrated. It is demonstrated that, combined with knowledge of typical vibration sources, this is a practical and cost effective way for forming a base for the vibration control prior to installation and for the planning of post-installation vibration monitoring of a piping system under operation.

1980 ◽  
Vol 24 (02) ◽  
pp. 101-113 ◽  
Author(s):  
Owen F. Hughes ◽  
Farrokh Mistree ◽  
Vedran Žanic

A practical, rationally based method is presented for the automated optimum design of ship structures. The method required the development of (a) a rapid, design-oriented finite-element program for the analysis of ship structures; (b) a comprehensive mathematical model for the evaluation of the capability of the structure; and (c) a cost-effective optimization algorithm for the solution of a large, highly constrained, nonlinear redesign problem. These developments have been incorporated into a program called SHIPOPT. The efficiency and robustness of the method is illustrated by using it to determine the optimum design of a complete cargo hold of a general-purpose cargo ship. The overall dimensions and the design loads are the same as those used in the design of the very successful SD14 series of ships. The redesign problem contains 94 variables, a nonlinear objective function, and over 500 constraints of which approximately half are non-linear. Program SHIPOPT required approximately eight minutes of central processing unit time on a CDC CYBER 171 to determine the optimum design.


2003 ◽  
Vol 125 (4) ◽  
pp. 393-402 ◽  
Author(s):  
S. A. Karamanos ◽  
E. Giakoumatos ◽  
A. M. Gresnigt

The paper investigates the response of elbows under in-plane bending and pressure, through nonlinear finite element tools, supported by experimental results from real-scale tests. The finite element analysis is mainly based on a nonlinear three-node “tube element,” capable of describing elbow deformation in a rigorous manner, considering geometric and material nonlinearities. Furthermore, a nonlinear shell element from a general-purpose finite element program is employed in some special cases. Numerical results are compared with experimental data from steel elbow specimens. The comparison allows the investigation of important issues regarding deformation and ultimate capacity of elbows, with emphasis on relatively thin-walled elbows. The results demonstrate the effects of pressure and the influence of straight pipe segments. Finally, using the numerical tools, failure of elbows under bending moments is examined (cross-sectional flattening or local buckling), and reference to experimental observations is made.


2013 ◽  
Vol 457-458 ◽  
pp. 354-357
Author(s):  
Yu Jie Sun ◽  
Qing Chun Cui ◽  
Suo Huai Zhang ◽  
Li Jun Yan

The objective of this paper provides a numerical implementation procedure of thermo-metallurgical-mechanical constitute equation based on additively decomposition of strain rate. Together with phase transformation kinetics, the macro material properties are determined by assigning temperature dependent material properties to each phase and by applying mixture rule to combine. Then the constitute equation is implemented into general purpose implicit finite element program via user material subroutine. The effectiveness of developed computational method is confirmed by a Satoh test simulation. Simulation of Satoh test demonstrates that transformation induce plasticity has significant effect of the evolution of residual stress and can not be neglected for alloy steel during hot working process.


2011 ◽  
Vol 78 (4) ◽  
Author(s):  
L. A. Spyrou ◽  
N. Aravas

A three-dimensional constitutive model for muscle and tendon tissues is developed. Muscle and tendon are considered as composite materials that consist of fibers and the connective tissues and biofluids surrounding the fibers. The model is nonlinear, rate dependent, and anisotropic due to the presence of the fibers. Both the active and passive behaviors of the muscle are considered. The muscle fiber stress depends on the strain (length), strain-rate (velocity), and the activation level of the muscle, whereas the tendon fiber exhibits only passive behavior and the stress depends only on the strain. Multiple fiber directions are modeled via superposition. A methodology for the numerical implementation of the constitutive model in a general-purpose finite element program is developed. The current scheme is used for either static or dynamic analyses. The model is validated by studying the extension of a squid tentacle during a strike to catch prey. The behavior of parallel-fibered and pennate muscles, as well as the human semitendinosus muscle, is studied.


1980 ◽  
Vol 102 (1) ◽  
pp. 62-69 ◽  
Author(s):  
T. Belytschko ◽  
J. M. Kennedy ◽  
D. F. Schoeberle

A quasi-Eulerian formulation is developed for fluid-structure interaction analysis in which the fluid nodes are allowed to move independent of the material thus facilitating the treatment of problems with large structural motions. The governing equations are presented in general form and then specialized to two-dimensional plane and axisymmetric geometries. These elements have been incorporated in a general purpose transient finite element program and results are presented for two problems and compared to experimental results.


Volume 1 ◽  
2004 ◽  
Author(s):  
M. M. Villar ◽  
M. M. Pe´rez

In this paper a numerical model is used to investigate the effect of the elasticity of the bearing in the pressure distribution in the lubricant and the stress distribution in the bearing. The lubricant film, as well as a bearing, including the lining and the backing of the insert, and the housing, are modeled using the general-purpose ANSYS®5.7 commercial Finite Element program. Results have been obtained for the pressure, radial displacement, hoop and von Mises stress distributions at the surface of the bearing, as well as for the shear stress distribution at the interface between the lining and the backing. A number of conclusions have been drawn regarding the relative significance of the steep pressure gradient at the end of the lubricated region on the hoop stresses that cause localized bending distortions at the surface of the lining. These localized bending distortions, in turn, are likely to cause fatigue failure of the lining.


Author(s):  
Juntao Bao ◽  
Jianming Gong ◽  
Shantung Tu ◽  
Yuesheng Li ◽  
Yanfei Qiu

Tapered pipe used in the main steam pipelines, which operated at high temperature and high pressure, including concentric tapered pipe and eccentric tapered pipe, they are sources of weakness in the piping system serviced in the power stations and the chemical plants, and creep is the significant reason that caused their failure. Creep damage analyses are carried out for these two kinds of tapered pipes by introducing user subroutine based on the modified Karchanov-Rabotnov constitutive equations into finite element program ABAQUS, then the effects of bending moments and internal pressure to the serviced life of the components are investigated by comparing four group of calculated results under different loads, the results indicated that eccentric tapered pipe is more inclinable to broken than concentric tapered pipe under the same conditions, so it is not recommended to use the eccentric tapered pipe in the piping system. The bending moments will accelerate the components’ failure, so it is necessary to take some advantages to reduce the bending moments near the tapered pipe, on the other hand, the life of the tapered pipe will decrease quickly with the internal pressure increasing, so the control of the operated pressure is important to ensure the serviced life of the pipelines.


1990 ◽  
Vol 57 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Raphael T. Haftka ◽  
Gerald A. Cohen ◽  
Zenon Mro´z

A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order post-buckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.


2016 ◽  
Vol 84 (1) ◽  
Author(s):  
Nan Hu ◽  
Rigoberto Burgueño

Geometric imperfection, known as a detrimental effect on the buckling load of cylindrical shells, has a new role under the emerging trend of using buckling for smart purposes. Eigenshape-based geometries were designed on the shell surface with the aim of tailoring the postbuckling response. Fourteen seeded geometric imperfection (SGI) cylinders were fabricated using polymer-based 3D printing, and their postbuckling responses were numerically simulated with a general-purpose finite element program. Results on the prototyped SGI cylinders showed a tunable elastic postbuckling response in terms of initial and final stiffness, the maximum load drop from mode switching, and the number of snap-buckling events. A response contour and discrete map is presented to show how the number of waves in the axial and circumferential directions in the seeded eigenshape imperfection can control the elastic postbuckling response. SGI cylinders provide diverse design opportunities for controllable unstable response and are good candidates for use in smart and adaptive materials/structures.


Sign in / Sign up

Export Citation Format

Share Document