Validation of a Code and Effect of Turbulence Model on Predicting Thermal Stratification Phenomena in the Upper Plenum of SFR

Author(s):  
Shibao Wang ◽  
Dalin Zhang ◽  
Chenglong Wang ◽  
Ping Song ◽  
Jing Chen ◽  
...  

Thermal stratification phenomena occurring in the upper plenum during a scram transient have an important influence on the structural integrity and the passive safety of sodium-cooled fast breeder reactor (SFR). A two-dimensional thermal-hydraulic analysis code was developed under cylindrical coordinate based on conservation laws of mass, momentum and energy. Block-structured grids were generated to resolve the problems with complicated geometric properties. A second-order scheme based on midpoint rule was applied for the discretization of convection and diffusion terms. Two RANS-type turbulent models, i.e. the standard k–ε model (SKE) and the realizable k–ε model (RKE), are available in this code. A sodium test with scaled model, characterized by large aspect ratio, of a Japanese prototype SFR was used for the validation, mainly from the viewpoints of vertical temperature profiles and rising characteristics of the stratification interface. Results showed that this code could reproduce overall basic behaviors of thermal stratification. The sodium with higher temperature stayed largely stagnant in the upper region under buoyancy effect. Due to the high heat conductivity of sodium, momentum transportation made its leading function. Thus, the RKE model which accounts for the mean deformation rate gave better outcomes than the SKE model.

2000 ◽  
Author(s):  
Y. Cao ◽  
J. Ling ◽  
R. Rivir ◽  
C. MacArthur

Abstract Radially rotating heat pipes have been proposed for cooling gas turbine disks working at high temperatures. A disk incorporating the heat pipe would have an enhanced thermal dissipation capacity and a much lower temperature at the disk rim and dovetail surface. In this paper, extensive numerical simulations have been made for heat-pipe-cooled disks. Thermal performances are compared for the disks with and without incorporating the heat pipe at different heating and cooling conditions. The numerical results presented in this paper indicate that radially rotating heat pipes can significantly reduce the maximum and average temperatures at the disk rim and dovetail surface under a high heat flux working condition. In general, the maximum and average temperatures at the disk rim and dovetail surface could be reduced by above 250 and 150 degrees, respectively, compared to those of the disk without the heat pipe. As a result, a disk incorporating radially rotating heat pipes could alleviate temperature-related problems and allow a gas turbine to work at a much higher temperature.


Author(s):  
Hwan Ho Lee ◽  
Joon Ho Lee ◽  
Dong Jae Lee ◽  
Seok Hwan Hur ◽  
Il Kwun Nam ◽  
...  

A numerical analysis has been performed to estimate the effect of thermal stratification in the safety injection piping system. The Direct Vessel Injection (DVI) system is used to perform the functions of Emergency Core Cooling and Residual Heat Removal for an APR1400 nuclear power plant (Korea’s Advanced Power Reactor 1400 MW-Class). The thermal stratification is anticipated in the horizontally routed piping between the DVI nozzle of the reactor vessel and the first isolation valve. Non-axisymmetric temperature distribution across the pipe diameter induced by the thermal stratification leads to differential thermal growth of the piping causing the global bending stress and local stress. Thermal hydraulic analysis has been performed to determine the temperature distribution in the DVI piping due to the thermal stratification. Piping stress analysis has also been carried out to evaluate the integrity of the DVI piping using the thermal hydraulic analysis results. This paper provides a methodology for calculating the global bending stresses and local stresses induced by the thermal stratification in the DVI piping and for performing fatigue evaluation based on Subsection NB-3600 of ASME Section III.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1046 ◽  
Author(s):  
S. M. Shakil Hussain ◽  
Ahmad Mahboob ◽  
Muhammad Shahzad Kamal

Thermal stability, salt tolerance, and solubility in normal and high salinity brine are the major requirements for any surfactant designed for oilfield applications because the surfactant stays in a non-ambient environment inside the reservoir for a long period of time. Herein, a series of new gemini cationic surfactants (GSs) with varying spacer hydrophilicity were synthesized and elucidated using MALDI-ToF-MS, NMR (1H, 13C), as well as FTIR spectroscopy. GSs found to be soluble in normal as well as high salinity brine and aqueous stability tests revealed that GSs possess the ability to retain their structural integrity at high salinity and high temperature conditions because no suspension formation or precipitation was detected in the oven aged sample of GSs at 90 °C for 30 days. Thermal gravimetric analysis displayed a higher decomposition temperature than the real reservoir temperature and the GS with a secondary amine spacer exhibited high heat stability. The significant reduction in surface tension and critical micelle concentration was observed using 1 M NaCl solution in place of deionized water. The difference in surface tension and critical micelle concentration was insignificant when the 1 M NaCl solution was replaced with seawater. The synthesized surfactants can be utilized for oilfield applications in a challenging high temperature high salinity environment.


Author(s):  
Xiaofei Yu ◽  
Yixiong Zhang

Thermal stratification of pressurizer surge line induced by the inside fluid brings on global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to confirm the structural integrity of pressurizer surge line affected by thermal stratification, this paper theoretically establishes thermal stratified transient and studies the calculation method of thermal stratified stress. A costly three-dimensional computation is simplified into a combined 1D/2D technique. This technique uses a pipe cross-section for computation of local thermal stresses and represents the whole surge line with one-dimensional pipe elements. The 2D pipe cross-section model is used to compute elastic thermal stresses in plane strain condition. Symmetry allows half the cross-section to be considered. The one-dimensional pipe elements model gives the global bending moments including effects of usual thermal expansion and thermal stratification of each model nodes. This combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line in this paper, using computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The stress and fatigue intensity of the surge line tallies with the correlative criterion.


2017 ◽  
Vol 66 (3) ◽  
pp. 631-642 ◽  
Author(s):  
Robert Smusz ◽  
Paweł Kielan ◽  
Damian Mazur

Abstract The basic aim of the task is to compile a temperature stratification system in an accumulation tank. The range of the thesis concerns the shape and dimensions of a stratification system for an accumulation tank. Thermal stratification is a process that comprises the maintaining of temperature stratification at different levels of an accumulation tank which reduce to a minimum the process of temperature equalization. It results from the fact that the thermal stratification in a tank significantly increases the installation efficiency and improves the process of energy storing. It is connected with a thermodynamic element quality, that is the higher the temperature, the higher the energy, and, thus, the thermos-dynamic element quality. In this phenomenon, thanks to the same amount of accumulated thermal energy and average temperature, as in a fully mixed tank, the user has a higher temperature in the upper part of the tank at his disposal. It has significant importance in the case when there is a low-temperature heating medium that transfers heat to the accumulation tank. Such a situation occurs when heat is absorbed from synthetic freons used in cooling and air-conditioning systems.


2015 ◽  
Vol 1119 ◽  
pp. 597-600
Author(s):  
Hyun Ho Jung ◽  
Ye Rim Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Kyung Ju Min ◽  
...  

Since solid state welded joint is formed from an intimate contact between two metals at temperatures below the melting point of the base materials, the structural integrity of welding depends on time, temperature, and pressure. This paper provides some of examples of friction stir welding and diffusion welding process for aerospace components. Friction stir welding process of AA2195 was developed in order to study possible application for a large fuel tank. Massive diffusion welding of multiple titanium sheets was performed and successful results were obtained. Diffusion welding of dissimilar metals of copper and stainless steel was necessary to manufacture a scaled combustion chamber. Diffusion welding of copper and steel was performed and it is shown that the optimum condition of diffusion welding is 7MPa at 890°C, for one hour. It is shown that solid state welding processes can be successfully applied to fabricate lightweight aerospace parts.


Author(s):  
E. E. Marotta ◽  
M. J. Ellsworth ◽  
J. Norley ◽  
G. Getz

IBM’s has recently introduced a high performance server that utilizes multichip modules that dissipate very high heat loads. Each multichip module consists of four microprocessor chips encased by a copper cap that serves to spread the heat load over an area of roughly 113 mm × 113 mm. The module is air cooled by a single aluminum alloy bonded-fin fan sink. For applications requiring the microprocessors to operate at higher frequencies, the aluminum heat sink, with its lower thermal conductivity, cannot provide sufficient cooling; therefore, a copper heat sink must be employed. However, copper alloys have the disadvantage of a significant weight penalty (density ∼ 8.9 g/cm3), being 3.3 times heavier than aluminum (density ∼ 2.7 g/cm3), and is significantly more costly to manufacture. A novel approach for an improved heat sink has been developed using a new natural graphite-based/epoxy composite material. This material has low density (∼1.9 g/cm3) and anisotropic thermal conductivity (∼370 W/m-K in two directions, ∼ 7 W/m-K in the third direction). Bonded fin manufacturing methods have been developed to produce a heat sink that exploits the material’s high thermal conductivity when used in combination with a copper spreader module, such as used in the IBM server. Convective heat sink thermal performance approaching that of copper (e.g. 0.030 °C/W) has been achieved at a fraction of copper’s weight. Therefore, additional hardware required to allow the copper heat sinks to withstand shock and vibration standards, was not necessary with the lightweight graphite solution. Mechanical issues involved with using the lower strength graphite materials in a metal retrofit situation had to be resolved. Solutions included the use of aluminum end plates to provide edge protection to the heat sink with metal stiffeners inserted into the base for extra structural integrity. A variety of mechanical attachment methods was evaluated to join the graphite to the copper heat spreader. Lapping procedures were developed for the graphite heat sink to provide the required flatness necessary to minimize the temperature drop across the interface.


2017 ◽  
Vol 65 (7) ◽  
pp. 407-420 ◽  
Author(s):  
Phillip McClellan ◽  
Robin Jacquet ◽  
Qing Yu ◽  
William J. Landis

A novel immunohistochemistry (IHC) approach has been developed to label and localize osterix, a bone-specific transcription factor, within formalin-fixed, paraffin-embedded, tissue-engineered constructs uniquely containing synthetic polymers and human periosteal tissue. Generally, such specimens consisting in part of polymeric materials and mineral are particularly difficult for IHC identification of proteins. Samples here were fabricated from human periosteum, electrospun poly-l-lactic acid (PLLA) nanofibers, and polycaprolactone/poly-l-lactic acid (PCL/PLLA, 75/25) scaffolds and harvested following 10 weeks of implantation in athymic mice. Heat-induced and protease-induced epitope retrieval methods from selected existing protocols were examined to identify osterix. All such protease-induced techniques were unsuccessful. Heat-induced retrieval gave positive results for osterix immunohistochemical staining in sodium citrate/EDTA/Tween 20 with high heat (120C) and pressure (~30 psi) for 10 min, but the heat and pressure levels resulted in tissue damage and section delamination from slides that limited protocol effectiveness. Heat-induced epitope retrieval led to other osterix-positive staining results achieved with minimal impact on structural integrity of the tissue and polymers in sodium citrate/EDTA/Tween 20 buffer at 60C and normal pressure (14.5 psi) for 72 hr. The latter approach identified osterix-positive cells by IHC within periosteal tissue, layers of electrospun PLLA nanofibers, and underlying PCL/PLLA scaffolds of the tissue-engineered constructs.


Author(s):  
Tenglong Cong ◽  
Guanghui Su ◽  
Wenxi Tian ◽  
Suizheng Qiu

Structural integrity of steam generator should be maintained during operation, since it performs as the pressure and heat transfer boundary of primary side coolant. Localized thermal-hydraulic parameters of secondary side are essential for the analysis of tube wastage, fatigue and failure. In this paper, a three-dimensional thermohydraulics analysis code, named STAF, is developed based on FLUENT. With STAF code, three-dimensional thermohydraulics of secondary side of AP1000 steam generator are generated. This code is developed based on the porous media theory. In this code, the drift flux two-phase model coupled with a simplified flow boiling model is utilized to present two-phase flow among the U-tube bundle. Downcomer, tube bundle, support plates and primary separators in steam generator are considered in STAF code. The calculated results are compared with a general steam generator thermohydraulic analysis code ATHOS, which is developed by EPRI steam generator group. The comparison indicates that STAF code performs well in evaluating thermal-hydraulic parameters in steam generator. The results show that the flow field varies significantly at different position in AP1000 steam generator. Flow vapor quality at the inlet of primary separators varies significantly, which is a severe challenge to the capacity design of separators.


Author(s):  
Yan Li ◽  
Daogang Lu ◽  
Zhigang Wang ◽  
Jian Wu ◽  
Fengyun Yu

Thermal stratification phenomena in piping systems of nuclear power plant would threaten the structural integrity of pipes, which are caused by the significant change of water density with temperature. To provide temperature gradients for the stress analysis of Normal heat Removal System (RNS) suction line of a Gen-III nuclear power plant, the relevant thermal stratification phenomena are analyzed by CFD in this paper. Cases without leakage (normal power operation) and with leakage are both studied. The results show that the first portion of pipe (one meter or so) near the hot leg is isothermal for normal power operation due to the penetrating flow. In the remaining portion, the radial temperature drops are of the order of 20∼27 K for no leakage case. For the leakage case, the radial temperature drops are 23 K or less, which are relatively smaller than those for the no leakage case due to the net hot flow from the hot leg to the valve.


Sign in / Sign up

Export Citation Format

Share Document