Application of Nanofluids in Minimum Quantity Lubrication Grinding

Author(s):  
Bin Shen ◽  
Albert Shih ◽  
Simon Tung

This research project investigated the wheel wear and tribological characteristics in wet, dry and minimum quantity lubrication (MQL) grinding of cast iron. Water-based Al2O3 and diamond nanofluids were applied in MQL grinding process and the results were compared with those of pure water. During the MQL grinding using nanofluids, a dense and hard slurry layer was formed on the wheel surface and could benefit the grinding performance. Experimental results showed that G-ratio, volume of wear of the grinding wheel vs. the volume of material removed, could be improved with high concentration nanofluids. Nanofluids showed the benefits to reduce grinding forces, improve surface roughness, and avoid workpiece burning. Compared to dry grinding, MQL grinding could significantly reduce the grinding temperature.

2011 ◽  
Vol 325 ◽  
pp. 231-237 ◽  
Author(s):  
Taghi Tawakoli ◽  
M.J. Hadad ◽  
A. Daneshi ◽  
M.H. Sadeghi ◽  
B. Sadeghi

In dry grinding, as there is no coolant lubricant to transfer the heat from the contact zone, generation of surface damages are not preventable. Promising alternatives to conventional flood coolant applications are also Minimum Quantity Lubricant (MQL) or Near Dry Machining (NDM) or Semi Dry Machining (SDM). This research has been conducted to study the influence of the abrasive and coolant-lubricant types on the minimum quantity lubrication (MQL) grinding performance. One type of CBN and three types of conventional wheels (corundum) were tested. The tests were carried out in presence of fluid, air jet and eleven types of coolant-lubricants, as well as in dry condition. The results indicate that the finest surface quality and the lowest grinding forces could be obtained when grinding with CBN wheels. In the case of conventional wheels, the coarser wheel induces much proper grinding results.


2013 ◽  
Vol 405-408 ◽  
pp. 3302-3306
Author(s):  
Ming Yi Tsai ◽  
Shi Xing Jian ◽  
J. H. Chiang

Grinding, a technique for removing abrasive materials, is a chip-removal process that uses an individual abrasive grain as the cutting tool. Abrasive material removal processes can be very challenging owing to the high power requirements and the resulting high temperatures, especially at the workpiece-wheel interface. This paper presents a novel system that uses graphite particles impregnated in an aluminum oxide matrix to form a grinding wheel. This study specifically investigated grinding wheels with a graphite content of 0.5 wt%. The new grinding wheel was compared with conventional grinding wheels by comparing the factors of grinding performance, such as surface roughness, morphology, wheel wear ratio, grinding temperature, and grinding forces, when the wheels were used under two different coolant strategiesdry and with minimum quantity lubrication (MQL) using pure water. This study found that there is a considerable improvement in the grinding performance using graphite-impregnated grinding wheels over the performance obtained using conventional grinding wheels. The use of 0.5 wt% graphite provided better surface roughness and topography, lower grinding temperature, and decreased force; in addition, wheel consumption was lower, resulting in extended wheel life.


Author(s):  
Luis Otávio Barreto de Sampaio Alves ◽  
Rodrigo de Souza Ruzzi ◽  
Rosemar Batista da Silva ◽  
Mark J. Jackson ◽  
Gilson Eduardo Tarrento ◽  
...  

Grinding is an abrasive process mostly used in finishing operations to provide low roughness and narrow limits of form and dimensioning to the workpiece. Due to the large amount of heat generated by friction between the abrasive and the workpiece in this process, the use of large volumes of coolant is encouraged to avoid thermal damage, such as burning and hardness variation caused by subsurface damage. On the other hand, environmental impacts and human health problems caused by coolants have been a key issue toward sustainable manufacturing, mainly because of the chemistry behind them. Thus, is important to seek for strategies to reduce the volume of fluids and their risks as well as guarantee grinding efficiency. One machining strategy is the minimum quantity of lubricant (MQL) technique, which is well consolidated over the past 25 years and one that uses low volumes of fluid mixed with compressed air flow, as well as provides less waste. However, it has generally been reported that sludge formed during grinding is forced into the wheel pores, consequently clogging its pores, thereby reducing the wheel cutting potential and its performance. A possible solution for this problem is to use an auxiliary compressed air system to clean the grinding wheel surface during machining, since the MQL conventional system is not able to clean it. In this context, this work evaluated the performance of the MQL technique with an auxiliary cleaning of the grinding wheel cutting surface in relation to the conventional cooling techniques (flood cooling) during a cylindrical plunge grinding of N2711 steel. N2711 steel is widely employed in manufacturing of molds for plastic injection processes and is one of steels more susceptible to grinding burn. The following output parameters were used to assess the performance: surface roughness, roundness, microhardness, grinding power, and grinding wheel wear. The results showed that the MQL technique, in addition to the environmental and economic advantages achieved, provided superior workpiece quality, and lower power consumed compared to the flood technique. The MQL technique proved to be an alternative method compared to the conventional technique under the conditions investigated. Also, the Malkin’s model was used to predict the grinding ratio (G-ratio) based on the experimental data obtained in this work. After regression analysis, the model predicted the G-ratio from the specific material removal rate and the cutting speed with a satisfactory accuracy of approximately 92%.


Author(s):  
Eduardo C Bianchi ◽  
Rafael L Rodriguez ◽  
Rodolfo A Hildebrandt ◽  
José C Lopes ◽  
Hamilton J de Mello ◽  
...  

Minimum Quantity Lubrication is an alternative technique to conventional techniques that are related to environmental sustainability and economic benefits. This technique promotes the substantial reduction of the amount of coolant employed in machining processes, representing a mitigation of risks to people’s health that are involved with the process. On the other hand, it has been reported in the literature that some problems of using the Minimum Quantity Lubrication technique can impair the grinding efficiency. One of these problems is associated with wheel clogging phenomenon, which is caused by inefficient chip removal from the cutting zone as well as from mixture of metal dust and oil accumulated on the wheel surface during grinding. If chips lodge inside the pores of the grinding wheel as machining progresses, they will adversely affect dimensional and geometric quality of final product. Also, this will require more frequent dressing. A solution for this problem can be an effective cleaning system of the abrasive wheel during grinding with the traditional Minimum Quantity Lubrication technique Assisted with Wheel Cleaning Jet. In this context and aiming to explore the various potential health, environmental and economic benefits that have been widely reported in the literature about the use of Minimum Quantity Lubrication technique in grinding, this study presents an application of the Minimum Quantity Lubrication technique at flow rates (30, 60 and 120 mL/h) and assisted with wheel cleaning jet (Minimum Quantity Lubrication + Assisted with Wheel Cleaning Jet) in plunge grinding of a hardened steel with an aluminum oxide wheel. Experiments were also carried out with traditional Minimum Quantity Lubrication (without wheel cleaning) and with the conventional coolant techniques for comparison. The output variables were geometrical errors (surface roughness and roundness) of the workpiece, diametric wheel wear, acoustic emission, vibration and tangential cutting force. Results showed that Minimum Quantity Lubrication + Assisted with Wheel Cleaning Jet (with wheel cleaning jet) not only outperformed the traditional Minimum Quantity Lubrication technique in all the parameters analyzed, but in some cases it proved to be compatible with the conventional coolant technique under the conditions investigated. Also, most of values of the output parameters tested decreased with increase in flow rate.


2010 ◽  
Vol 139-141 ◽  
pp. 1378-1383 ◽  
Author(s):  
Guang Yao Meng ◽  
Ji Wen Tan ◽  
Yi Cui

Grinding is often to use the grinding fluid because of the high temperature in the grinding area. During the process of grinding, which is used traditional way of grinding fluid supply, gas barrier layer which around high-speed rotary wheel impeded effective grinding fluid into grinding zone, so it creates huge waste and pollution. Minimum quantity lubricant (MQL) grinding as a way of Green Manufacturing is proposed in recent years. So far, the problem of MQL can be applied in grinding has not been confirmed. In this paper, the applicability of MQL in grinding is studied by comparing the experiment of traditional grinding fluid supply method, minimum quantity lubricant grinding method and dry grinding method, and this study is based on theoretical analysis of minimum quantity lubricant grinding.


Given the increasing attention to environmental and health problems caused by machining, the development of an environmentally friendly grinding fluid has become an urgent task. In this study, seven typical vegetable oils (i.e., soybean, peanut, maize, rapeseed, palm, castor, and sunflower oil) were used as the minimum quantity lubrication (MQL) base oil to conduct an experimental evaluation of the friction properties of the grinding wheel/workpiece interface. With nickel-based alloy GH4169 as workpiece material, the flood grinding and MQL grinding were selected. Experimental results indicated that castor oil MQL grinding had a friction coefficient and specific grinding energy of 0.30 and 73.47 J/mm3, which decreased by 50.1% and 49.4%, respectively, compared with flood grinding. Moreover, maize oil had the highest G-ratio of 29.15. Peanut, sunflower, and soybean oil with more saturated fatty acids, castor oil with more castor acids, and palm oil with numerous palmitic acids were suitable as lubricating fluids.


Author(s):  
Menghua Sui ◽  
Changhe Li ◽  
Wentao Wu ◽  
Min Yang ◽  
Hafiz Muhammad Ali ◽  
...  

Abstract Nanofluid minimum quantity lubrication (NMQL) has better stability, higher thermal conductivity, and excellent lubrication performance compared with traditional flood lubrication. The heat transfer model and finite difference model were established to verify the feasibility of NMQL conditions in grinding cemented carbide. Based on them, the grinding temperature of cemented carbide is calculated numerically. Results show that the grinding zone temperatures of flood grinding and NMQL are lower, 85.9 °C and 143.2 °C, respectively. Surface grinding experiments of cemented carbide YG8 under different working conditions are carried out. Dry grinding (227.2 °C) is used as the control group. Grinding zone temperatures of flood grinding, minimum quantity lubrication, and NMQL decrease by 64.2%, 39.5%, and 20.4% respectively. The error is 6.3% between theoretical calculation temperature and experimental measurement temperature. Based on machining process parameters (specific grinding force, force ratio) and experimental results (microstructure of grinding wheel, workpiece, and grinding debris), the effects of different working conditions on wheel wear are studied. NMQL achieves the highest G ratio of 6.45, the smallest specific grinding force, and the smallest Fn/Ft ratio of 2.84, which further proves that NMQL is suitable for grinding cemented carbide.


Sign in / Sign up

Export Citation Format

Share Document