Performance Evaluation of the Minimum Quantity of Lubricant Technique With Auxiliary Cleaning of the Grinding Wheel in Cylindrical Grinding of N2711 Steel

Author(s):  
Luis Otávio Barreto de Sampaio Alves ◽  
Rodrigo de Souza Ruzzi ◽  
Rosemar Batista da Silva ◽  
Mark J. Jackson ◽  
Gilson Eduardo Tarrento ◽  
...  

Grinding is an abrasive process mostly used in finishing operations to provide low roughness and narrow limits of form and dimensioning to the workpiece. Due to the large amount of heat generated by friction between the abrasive and the workpiece in this process, the use of large volumes of coolant is encouraged to avoid thermal damage, such as burning and hardness variation caused by subsurface damage. On the other hand, environmental impacts and human health problems caused by coolants have been a key issue toward sustainable manufacturing, mainly because of the chemistry behind them. Thus, is important to seek for strategies to reduce the volume of fluids and their risks as well as guarantee grinding efficiency. One machining strategy is the minimum quantity of lubricant (MQL) technique, which is well consolidated over the past 25 years and one that uses low volumes of fluid mixed with compressed air flow, as well as provides less waste. However, it has generally been reported that sludge formed during grinding is forced into the wheel pores, consequently clogging its pores, thereby reducing the wheel cutting potential and its performance. A possible solution for this problem is to use an auxiliary compressed air system to clean the grinding wheel surface during machining, since the MQL conventional system is not able to clean it. In this context, this work evaluated the performance of the MQL technique with an auxiliary cleaning of the grinding wheel cutting surface in relation to the conventional cooling techniques (flood cooling) during a cylindrical plunge grinding of N2711 steel. N2711 steel is widely employed in manufacturing of molds for plastic injection processes and is one of steels more susceptible to grinding burn. The following output parameters were used to assess the performance: surface roughness, roundness, microhardness, grinding power, and grinding wheel wear. The results showed that the MQL technique, in addition to the environmental and economic advantages achieved, provided superior workpiece quality, and lower power consumed compared to the flood technique. The MQL technique proved to be an alternative method compared to the conventional technique under the conditions investigated. Also, the Malkin’s model was used to predict the grinding ratio (G-ratio) based on the experimental data obtained in this work. After regression analysis, the model predicted the G-ratio from the specific material removal rate and the cutting speed with a satisfactory accuracy of approximately 92%.

Author(s):  
Bin Shen ◽  
Albert Shih ◽  
Simon Tung

This research project investigated the wheel wear and tribological characteristics in wet, dry and minimum quantity lubrication (MQL) grinding of cast iron. Water-based Al2O3 and diamond nanofluids were applied in MQL grinding process and the results were compared with those of pure water. During the MQL grinding using nanofluids, a dense and hard slurry layer was formed on the wheel surface and could benefit the grinding performance. Experimental results showed that G-ratio, volume of wear of the grinding wheel vs. the volume of material removed, could be improved with high concentration nanofluids. Nanofluids showed the benefits to reduce grinding forces, improve surface roughness, and avoid workpiece burning. Compared to dry grinding, MQL grinding could significantly reduce the grinding temperature.


1959 ◽  
Vol 81 (3) ◽  
pp. 187-199 ◽  
Author(s):  
E. J. Krabacher

Optimum utilization of grinding wheels can best be achieved if the nature of their performance and wear characteristics, and the factors that affect these characteristics, are understood and applied. As reported in this paper, a comprehensive, continuing, grinding-research program has contributed to such an understanding. A study of the nature of grinding-wheel wear indicates that the grinding-wheel wear curve is similar to those of other cutting tools. It demonstrates further that the type of grinding operation significantly affects the nature of wheel wear. A unique technique has been developed for very accurately measuring grinding-wheel wear. This measured wear may be translated into terms of “grinding ratio,” which is the generally accepted parameter for measuring wheel wear. It is the ratio of the volume of metal removed per unit volume of wheel worn away. Extensive studies have been carried out to determine the effect of mechanical variables on grinding ratio, power required in metal removal, and on surface finish. Experimental findings indicate that grinding ratio decreases with increased metal-removal rate and increases with workpiece diameter, decreased chip load, and increased concentration of grinding fluid. Power is found to increase with both the metal-removal rate and the amount of metal removed. It increases slightly with workpiece diameter and is affected little by work-material hardness. Surface finish is found to improve with decreased metal-removal rate and decreased chip load. It also is affected little by work diameter or work-material hardness. Fundamental research in the mechanics of wheel wear is supplying much additional information in the study of grinding-wheel wear. The measurement of grinding forces employing a cylindrical grinding dynamometer provides the opportunity for relating the wear of grinding wheels to the basic mechanics of the process through such fundamental quantities as grinding forces, specific energy, and grinding friction. Two additional experimental techniques for the study of chip formation in grinding have also proved to be most useful research tools. A “quick-stop” apparatus is used to freeze the grinding action by accelerating a tiny workpiece almost instantaneously to grinding-wheel speed. Another technique permits the comparison of the shape of the grinding grit and that of the contour of its path through the workpiece by a unique replicating method.


Author(s):  
M.A. Younis ◽  
H. Alawi

The high hardness and chemical effects of tool steels M2 and T15 cause a rapid grinding wheel wear and micro structural changes in the ground surface. The performance of sulphur-, wax-, and varnish-impregnated grinding wheels in grinding hardened tool steels M2 and T15 is investigated and compared with the performance of conventional alumina wheels. Impregnation with sulphur had in all cases beneficial effects by decreasing the grinding forces, increasing the maximum metal removal rate, improving surface integrity, and increasing considerably the grinding ratio. It also gave cost saving compared to the plain grinding wheel. The improvement was a result of the sulphur being more efficiently supplied into the chip formation process as compared to using grinding coolant only.


2011 ◽  
Vol 325 ◽  
pp. 134-139 ◽  
Author(s):  
Zhong De Shi ◽  
Amr Elfizy ◽  
Benoit St-Pierre ◽  
Helmi Attia

An experimental study is reported on the grinding of a nickel-based alloy using vitrified CBN wheels. This work was motivated by switching the grinding of fir-tree root forms of jet engine blades from creep-feed grinding with conventional abrasive wheels to vitrified CBN wheels. The objective is to explore process limits and practical grinding parameters for judging the switch in terms of overall costs and productivity. Straight surface grinding experiments were conducted with water-based fluid on rectangular blocks at a fixed wheel speed vs = 45 m/s, various depths of cut a = 0.05 - 1.0 mm, and workspeeds vw = 2 - 40 mm/s. Grinding power, forces, surface roughness, and radial wheel wear were measured. Specific material removal rate of 8 mm3/(mm.s) was reached in rough grinding using a wheel dressed for achieving surface roughness Ra = 0.8 µm in finish grinding. It was found that shallow depths of cut combined with fast workspeeds, or less creep-feed modes, are more suitable for achieving high material removal rates with vitrified CBN grinding. Rough grinding is restricted by high grinding temperatures with newly dressed wheels and by chatters with worn wheels.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1931
Author(s):  
Anshuman Das ◽  
Smita Padhan ◽  
Sudhansu Ranjan Das ◽  
Mohammad S. Alsoufi ◽  
Ahmed Mohamed Mahmoud Ibrahim ◽  
...  

Sustainable manufacturing has received great attention in the last few decades for obtaining high quality products with minimal costs and minimal negative impacts on environment. Sustainable machining is one of the main sustainable manufacturing branches, which is concerned with improving environmental conditions, reducing power consumption, and minimizing machining costs. In the current study, the performance of three sustainable machining techniques, namely dry, compressed air cooling, and minimum quantity lubrication, is compared with conventional flood machining during the turning of austenitic stainless steel (Nitronic 60). This alloy is widely used in aerospace engine components, medical applications, gas power industries, and nuclear power systems due to its superior mechanical and thermal properties. Machining was performed using SiAlON ceramic tool with four different cutting speeds, feeds and a constant depth of cut. Consequently, various chip characteristics such as chip morphology, chip thickness, saw tooth distance and chip segmentation frequency were analyzed with both optical and scanning electron microscopes. Performance assessment was performed under the investigated cutting conditions. Our results show that the tool life under MQL machining are 138%, 72%, and 11% greater than dry, compressed air, and flooded conditions, respectively. The use of SiAlON ceramic tool results is more economically viable under the MQL environment as the overall machining cost per component is lower ($0.27) as compared to dry ($0.36), compressed air ($0.31), and flooded ($0.29) machining conditions. The minimum quantity lubrication technique outperformed the other investigated techniques in terms of eco-friendly aspects, economic feasibility, and technical viability to improve sustainability.


Author(s):  
Yulun Chi ◽  
Haolin Li ◽  
Xun Chen

In production engineering, monitoring of the grinding process is critical for acquiring information on material removal, wheel performance and workpiece quality. Here, a general model of the power signal and material removal rate is proposed to monitor the internal plunge grinding of a bearing outer race way product. Three continuous grinding cycles after dressing were used to analyse the roughing, semi-finishing, finishing and spark-out process under the same parameters. Based on the actual grinding process, a practical analysis method is applied to improve the general model to more accurately predict the power curve. Finally, estimations of grinding wheel performance and grind quality using the grinding power signal model coefficients are also presented. The experimental results showed that the improved power signal model is capable of solving the industrial problem of multi-stage infeed grinding cycles and improving grind quality.


Author(s):  
Aleksandr A. Dyakonov ◽  
Dmitrii V. Ardashev

The article presents the results of calculating the blunting area of abrasive grains of grinding wheels, determined in accordance with the previously developed model. The mathematic model of the size of the blunting area of an abrasive grain considers the main mechanisms of its wear—mechanical and physicochemical. These mechanisms are taken into account in the model. For the first time, the kinetic theory of strength was used for determining the mechanical wear of abrasive grain. The mass transfer theory was used to study the physicochemical wear: coefficients of chemical affinity with the abrasive material are experimentally defined for the assortment of workpiece materials. The developed mathematic model is a multiple-factor one and this will allow to predict the size of wear of the abrasive wheel for different technological conditions. Also, the article presents the experimental method for determining the blunting area of abrasive grains of grinding wheels, which allows making a direct measurement of wear parameters of grinding wheels. The main parameter of grinding wheel wear is the length of the blunting area of the grain, which was measured out in the direction of the cutting speed vector. The grinding wheels of different graininess were studied—F60 and F46. The grinding wheel working surface was studied by numerical photos and microscope. The results of these experiments have confirmed the adequacy of the design model.


2020 ◽  
Vol 15 (4) ◽  
pp. 403-415
Author(s):  
A.H. Khawaja ◽  
M. Jahanzaib ◽  
T.A. Cheema

High-speed machining (HSM) maintains a high interest in the preparation of metal parts for optimum results, but with the application of HSM, the sustainability issue becomes important. To overcome the problem, minimum quantity lubrication (MQL) during HSM is one of the innovative and challenging tasks during conventional cutting (milling) to improve quality, productivity, and strength under the umbrella of sustainability. The objective of this research is to achieve sustainable machining by simultaneously optimizing sustainable machining drivers during the HSM of 15CDV6 HSLA steel under MQL and flood lubrication. The response surface methodology has been applied for the development of mathematical models and selecting the best combination of process parameters to optimized responses, i.e. surface roughness, material removal rate, and strength. Optimization associated with sustainability produced compromising optimal results (Min. Ra 0.131 µm, Max. MRR 0.64 cm3/min, and Max. ST 1132 MPa) at the highest cutting speed 270 m/min and the lowest feed rate 0.09 mm/rev and depth of cut 0.15 mm under MQL. The comparative investigation exposed that significant improvement in Ra (1.1-16.6 %) and ST (1.3-2.3 %) of the material using MQL has been witnessed and gives a strong indication that MQL is the best substitute than the flood lubrication. The scientific contribution of the approach is to develop mathematical models under MQL and flood lubrication that will aid practitioners to choose input parameters for desired responses without experimentations. The work would be beneficial in the field of aviation, defense, and aeronautical applications due to the excellent mechanical properties of 15CDV6 HSLA steel.


1987 ◽  
Vol 109 (2) ◽  
pp. 69-75 ◽  
Author(s):  
T. Matsuo ◽  
K. Nakasako

The selection of proper grinding wheels in snagging is an important problem with relation to the automation of this grinding process. In this study, a snagging test under constant load has been made on SUJ 2 bearing steel, 304 stainless steel, and FCD 45 cast iron, using a specially made grinding machine of 40KW. The grinding wheels used were regular alumina, sintered white alumina, 25 percent zirconia-alumina, and silicon carbide resinoid wheels, where wheel diameter is 455 mm. Wheel speed was 67 m/s and work’s traverse speed was 60 mm/s. A 1.0 m long plate workpiece of constant width was used to keep pressure constant during grinding. This experiment allowed the metal removal rate, the wheel wear rate, G-ratio and grinding force to be determined. Thus the effect of wheel type and wheel grade on grinding performance was evident and the selection of the proper wheel has been discussed.


2010 ◽  
Vol 126-128 ◽  
pp. 615-620 ◽  
Author(s):  
Taghi Tawakoli ◽  
Bahman Azarhoushang

The application of advanced ceramics in high-tech industries is increasing considerably due to their superior properties. However the difficulties involved and manufacturing costs have been impediments to the widespread replacement of metals by the advanced ceramics. One of the main targets in grinding of these materials is increasing the machining efficiency while preserving the surface integrity. Hence in order to reduce the grinding forces and temperatures and increase the material removal rate, a specially designed segmented wheel (T-Tool) has been developed. Reducing the static cutting edges via segmenting the wheel which automatically leads to reduction of momentarily engaging cutting edges results in a reduction of rubbing and plowing regimes and therefore a decrease in the specific grinding energy. The obtained results show that the application of the T-Tool wheel can increase the G-ratio and decrease the grinding forces considerably. A decrease of up to 35% of grinding forces has been achieved.


Sign in / Sign up

Export Citation Format

Share Document