Design and Development of Magneto Rheological Dampers for Bicycle Suspensions

1999 ◽  
Author(s):  
Mehdi Ahmadian

Abstract The design and fabrication of a magneto rheological (MR) damper for bicycle suspension applications is addressed. Two 1998 Judy® Dampers are retrofitted with MR valves, to achieve the damping force adjustability that the MR fluid offers. One design attempts to use as many of the Judy® Damper components as possible. The second design significantly modifies the Judy® Damper, to better accommodate the MR valve and ease of fabrication and assembly, although fitting into the same envelope as the Judy® damper for a direct retrofit. The two MR dampers are fabricated and assembled for force-velocity characterization testing. The test results show that properly-designed MR dampers can provide significant dynamic performance improvements, as compared to conventional passive bicycle dampers.

2001 ◽  
Vol 8 (3-4) ◽  
pp. 147-155 ◽  
Author(s):  
Mehdi Ahmadian ◽  
James C. Poynor

The application of magneto rheological dampers for controlling recoil dynamics is examined, using a recoil demonstrator that includes a single-shot 50 caliber BMG rifle action and a MR damper. The demonstrator is selected such that it can adequately represent the velocities that commonly occur in weapons with a recoil system, and can be used for collecting data for analyzing the effects of MR dampers on recoil dynamics. The MR damper is designed so that it can work effectively at the large velocities commonly occurring in gun recoil, and also be easily adjusted to reasonably optimize the damper performance for the recoil demonstrator. The test results show that it is indeed possible to design and use MR dampers for recoil applications, which subject the damper to relative velocities far larger than the applications that such dampers have commonly been used for (i.e., vehicle applications). Further, the results indicate that the recoil force increases and the recoil stroke decreases nonlinearly with an increase in the damping force. Also of significance is the fact that the adjustability of MR dampers can be used in a closed-loop system such that the large recoil forces that commonly occur upon firing the gun are avoided and, simultaneously, the recoil stroke is reduced. This study points to the need for several areas of research including establishing the performance capabilities for MR dampers for gun recoil applications in an exact manner, and the potential use of such dampers for a fire out of battery recoil system.


1999 ◽  
Author(s):  
Mehdi Ahmadian ◽  
James C. Poynor ◽  
Jason M. Gooch

Abstract This study will examine the effectiveness of magneto-rheological (MR) dampers for controlling shock dynamics. Using a system that includes a 50-caliber rifle and a magneto-rheological damper, it is experimentally shown that MR dampers can be quite effective in controlling the compromise that commonly exists between shock forces and strokes across the shock absorber mechanism. A series of tests are conducted to demonstrate that different damping forces by the MR damper can result in different shock-force/stroke profiles. The test results further show that MR dampers can be used in a closed-loop system to adjust the shock loading characteristics in a manner that fits the dynamic system constraints and requirements.


Author(s):  
Riaan F. Meeser ◽  
P. Schalk Els ◽  
Sudhir Kaul

This paper presents the design of a magneto-rheological (MR) damper for an off-road vehicle where large suspension travel and high flow rates, as compared to typical passenger car suspensions, are required. The MR damper is expected to enhance the capability of the suspension system by allowing variable damping due to inherent properties of the MR fluid. MR fluids exhibit a reversible behavior that can be controlled with the intensity of a magnetic field, allowing a change in the effective viscosity and thereby in the damping characteristics of the fluid. A mathematical model of the proposed damper has been developed using the Bingham plastic model so as to determine the necessary geometry for the damper designed in this study, using the fluid flow rate and current to the electromagnet as the input variables. The model is used to compute the damping force, and the analytical results show that the designed MR damper provides the required range of damping force for the specific vehicle setup that is being used for this study. A valve-mode MR fluid channel has been designed such that the required minimum damping is reached in the off-state, and the desired maximum damping is reached in the on-state. For manufacturing and size considerations, the final design incorporates a triple pass layout with the MR fluid flowing through the three passages that are arranged in an S-shape so as to minimize the cross section of the electromagnet core.


Author(s):  
R.B. Soujanya ◽  
D.D. Jebaseelan ◽  
S. Kannan

Passenger’s comfort in moving vehicles depends on the quality of the ride. The major cause of discomfort is the vibration transmitted to passengers due to the road irregularities. For a comfortable ride on a vehicle, vibration must stay within prescribed standards. In the present work, an attempt was made to show that, the vibrations can be limited with the use of Magneto-rheological (MR) dampers for varying road profiles than the passive damping methods. MR dampers are semi-active control devices that use MR fluids to produce controllable damping force as they are known to exhibit nonlinear behaviour. Multi body dynamic studies were done to study the response of the system using a quarter car model. In this paper, passive damping (viscous damping) was considered at natural frequency of 1.012Hz, the response of damping was observed after 10s and the acceleration was found to be 6m/s2. When MR damper is employed as the magnetic force increases, the response of the damping was better than the passive damping, at 1.2A it comes down to 0.55m/s2, and the vibration gets dampened after 1.75s. Hence, from this study it is concluded that the MR damper can be employed in automobile for better ride comfort.


Author(s):  
Toshihiko Shiraishi ◽  
Tomoya Sakuma ◽  
Shin Morishita

Two typical types of MR damper were proposed, where the orifice for MR fluid was designed to place between the piston and the cylinder in one type, and to place on the piston in the other type. In the former design, MR fluid was expected to be subjected to shear flow in the orifice, and subjected to Poiseuille flow in the latter design. The damping force of MR dampers was experimentally measured under various conditions of piston speed, piston amplitude and applied electric current to the magnetic coil. The experimental results showed that the maximum damping force were almost the same in both types of damper under the same conditions, except for case under very little amplitude. It was also shown that typical characteristics of MR damper depended on the clearance of orifice and air volume in MR dampers, and the optimal design for the dynamic range of damping force existed in relation to the clearance of orifice. The experimental result of the damping force of these dampers showed good agreement with the analytical result.


Author(s):  
Douglas Ivers ◽  
Douglas LeRoy

This paper will discuss how controllable material technology, such as the use of active magneto-rheological (MR) dampers, improves vehicle primary and secondary suspensions. Although relatively new to the marketplace, semi-active suspensions in commercial automobiles and off-highway vehicles have been proven through the use of active MR dampers since 1998. In fact, MR suspension dampers are found today on the commercial vehicles of an increasing number of automotive OEMs and leading off-highway OEMs. MR fluid dampers are simple in design and have the advantage of no moving parts. The resistive force from an MR damper is generated as iron particles, suspended in the magneto-rheological fluid (MR fluid); pass through a magnetic field controlled by the electrical current passing through an electric coil contained within a moving piston surrounded by fluid. By adjusting the current to the damper coil in response to feedback from vehicle sensors and a controller, the damping response of the suspension can be optimized and controlled in real time to provide optimal operator comfort. The MR Damper System has a full-scale step response of less than 10 milliseconds. Sophisticated control algorithms adapt to large changes in payload, enabling the vehicle to meet ride metrics without pneumatic load leveling. Other benefits of the MR damping system include higher speed in NATO double-lane change tests, reduced risk of roll-over, improved accuracy of mounted weapons, and improved vehicle durability and readiness.


2012 ◽  
Vol 187 ◽  
pp. 311-314
Author(s):  
Hai Jun Xing

In this paper, utilizing Herschel-Bulkley model, the equation of MR fluid pressure gradient is derived in order to predict MR damper’s force-velocity behavior. The equation, showing as a complicated nonlinear algebraic expression including various parameters, is then simplified to a nondimensional equation. This is followed by the analysis of the root of this nondimensional equation and an approximate root closely corresponding to numerical result is given.


2011 ◽  
Vol 311-313 ◽  
pp. 2286-2290
Author(s):  
Jie Lai Chen ◽  
Xue Zheng Jiang ◽  
Ning Xu

The focus of this study is to experimentally investigate a semi-active magneto-rheological (MR) damper for a passenger vehicle, by using a quarter car models. After verifying that the damping force of the MR damper can be continuously tuned by the intensity of the magnetic field, a full-scale two-degree of freedom quarter car experimental set up is constructed to study the vehicle suspension. On-off skyhook controller is employed to achieve the desired damping force. The experimental results show that the semi-active vehicle suspension vibration control system based on MR dampers is feasible and can effectively improve ride comfort of vehicle.


2012 ◽  
Vol 220-223 ◽  
pp. 1865-1870
Author(s):  
Wei Wang ◽  
Pin Qi Xia

For the complex nonlinear property and a lot of regulatory parameter, it is difficult to design a reasonable magneto-rheological (MR) damper by simply process or experience. To solve this problem a structural optimization has been presented in this article. Three stages have been discussed in the article. By calculate the flux of MR fluid based on the yield stress of MR fluid, selected common design targets such as maximal output damping force, dynamic range and consult volume of damper has been presented in formula respectively with the parameter according to damper structure. By approximate the magnetic circle, the power of excitation also has been presented as an expression of structure parameter. An optimum method named multi-goal attach has been applied to solve the optimum problem. Finally some confirmation and experiment results have been presented. The experiment results indicated that the method presented in the article was effectively.


2004 ◽  
Vol 126 (1) ◽  
pp. 105-109 ◽  
Author(s):  
Hiroshi Sodeyama ◽  
Kohei Suzuki ◽  
Katsuaki Sunakoda

In recent years, there has been increasing research in several industrial fields for development of semi-active vibration control devices. In particular, devices using magneto-rheological (MR) fluid have been attracting great research interest because they can realize high performance as capacity-variable dampers. MR fluids are controllable fluids that respond to applied magnetic fields. Applied magnetic fields drastically change the viscosity of MR fluids from an oily state to a semi-solid state. This paper describes a study on a large capacity device using an MR fluid, i.e., an MR damper. This developed MR damper provides a maximum damping force of 300 kN. Various tests were carried out and the dynamic characteristics, force-displacement hysteresis loops and controllable forces were investigated. These tests verified that the MR damper provides a technology that enables effective semi-active control of large-scale structure systems, i.e., real buildings and civil engineering structures.


Sign in / Sign up

Export Citation Format

Share Document