Semi-Active Control of a Vehicle Suspension Based on Magneto-Rheological Damper

2011 ◽  
Vol 311-313 ◽  
pp. 2286-2290
Author(s):  
Jie Lai Chen ◽  
Xue Zheng Jiang ◽  
Ning Xu

The focus of this study is to experimentally investigate a semi-active magneto-rheological (MR) damper for a passenger vehicle, by using a quarter car models. After verifying that the damping force of the MR damper can be continuously tuned by the intensity of the magnetic field, a full-scale two-degree of freedom quarter car experimental set up is constructed to study the vehicle suspension. On-off skyhook controller is employed to achieve the desired damping force. The experimental results show that the semi-active vehicle suspension vibration control system based on MR dampers is feasible and can effectively improve ride comfort of vehicle.

Author(s):  
R.B. Soujanya ◽  
D.D. Jebaseelan ◽  
S. Kannan

Passenger’s comfort in moving vehicles depends on the quality of the ride. The major cause of discomfort is the vibration transmitted to passengers due to the road irregularities. For a comfortable ride on a vehicle, vibration must stay within prescribed standards. In the present work, an attempt was made to show that, the vibrations can be limited with the use of Magneto-rheological (MR) dampers for varying road profiles than the passive damping methods. MR dampers are semi-active control devices that use MR fluids to produce controllable damping force as they are known to exhibit nonlinear behaviour. Multi body dynamic studies were done to study the response of the system using a quarter car model. In this paper, passive damping (viscous damping) was considered at natural frequency of 1.012Hz, the response of damping was observed after 10s and the acceleration was found to be 6m/s2. When MR damper is employed as the magnetic force increases, the response of the damping was better than the passive damping, at 1.2A it comes down to 0.55m/s2, and the vibration gets dampened after 1.75s. Hence, from this study it is concluded that the MR damper can be employed in automobile for better ride comfort.


Author(s):  
Anria Strydom ◽  
Werner Scholtz ◽  
Schalk Els

Magnetorheological (MR) dampers are controllable semi-active dampers capable of providing a range of continuous damping settings. MR dampers are often incorporated in suspension systems of vehicles where conflicting damping characteristics are required for favorable ride comfort and handling behavior. For control applications the damper controller determines the required damper current in order to track the desired damping force, often by using a suitable MR damper model. In order to utilise the fast switching time capability of MR dampers, a model that can be used to directly calculate damper current is desired. Unfortunately few such models exist and other methods, which often negatively affect the computational efficiency of the model, need to be used when implementing these models. In this paper a selection of MR damper models are developed and evaluated for both accuracy and computational efficiency while tracking a desired damping force. The Kwok model is identified as a suitable candidate for the intended suspension control application.


Author(s):  
A. Narimani ◽  
M. F. Golnaraghi

Semi-active isolators offer significant improvement in performance over passive isolators. These systems benefit from the advantages of active systems with the reliability of the passive systems. In this work we study a vibration isolation system with a magnetorheological (MR) damper. The experimental investigation of the mechanical properties of a commercially available linear MR damper (RD-1005-3) was conducted next. The mathematical Bouc-Wen model was adopted to predict the performance of MR damper. In addition, a modified Bingham model has been developed to characterize the damper behavior more accurately and efficiently. The measured hysteresis characteristics of field-dependent damping forces are compared with the simulation results from the described mathematical models. The accuracy of a damping-force controller using the proposed method is also demonstrated experimentally. Finally, a scaled quarter car model is set up to study the performance of the control strategy. The experimental results show that with the semi-active control the vibration of the quarter car model is well controlled.


1999 ◽  
Author(s):  
Mehdi Ahmadian

Abstract The design and fabrication of a magneto rheological (MR) damper for bicycle suspension applications is addressed. Two 1998 Judy® Dampers are retrofitted with MR valves, to achieve the damping force adjustability that the MR fluid offers. One design attempts to use as many of the Judy® Damper components as possible. The second design significantly modifies the Judy® Damper, to better accommodate the MR valve and ease of fabrication and assembly, although fitting into the same envelope as the Judy® damper for a direct retrofit. The two MR dampers are fabricated and assembled for force-velocity characterization testing. The test results show that properly-designed MR dampers can provide significant dynamic performance improvements, as compared to conventional passive bicycle dampers.


2011 ◽  
Vol 159 (1) ◽  
pp. 294-301
Author(s):  
Maciej ZAJĄC ◽  
Wiesław GRZESIKIEWICZ ◽  
Michał MAKOWSKI

This paper describes a control algorithm for a damping system equipped with a magneto-rheological damper (MR). A method of vibration limitation by a controlled MR damper has been presented. The model of the vehicle suspension has been built using DADS software and the control algorithm in the Simulink software. As a criterion of optimising the damping force, the index characterising vertical accelerations has been used.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1439-1445
Author(s):  
Xinna Ma ◽  
Shaopu Yang ◽  
Wenrui Shi

With running speed increases, the dynamics characteristic of railway vehicle system behaves intensively, such as, snaking motion, bifurcation problem, even digression accident. These questions effect ride comfort and run stationary. The magneto-rheological (MR) damper can continually change its state in a few milliseconds and has low energy requirement and insensitivity to the temperature and circumstance. MR dampers have turned out to be a promising device in vibration control. According to the nonlinear of MR damper and the vibration characteristic of semi-active suspension of high-speed vehicle, a seventeen-degree-of-freedom lateral semi-control model of high-speed whole vehicle with MR dampers is established. Taking into account of the vibrations of vehicle and electromagnetic interference, a novel adaptive fuzzy control strategy is put forward. The simulation results show that adaptive fuzzy control method can improve the ride comfort and restrain electromagnetic interference. The electromagnetic interference noise problems in high-speed railway vehicle system with MRD are analyzed and discussed according to EN 55022 for the first time.


Author(s):  
Jong-Seok Oh ◽  
Hwan-Choong Kim ◽  
Seung-bok Choi

In this work, control performance of a semi-active railway vehicle suspension system featuring MR damper is evaluated. Firstly, a mathematical model for railway vehicle which contains car body, bogie frame and wheel-set is derived to represent lateral, yaw and roll motions. From this model, design parameters of MR damper are optimally determined. And then, MR dampers which can generate proper damping force to control the unwanted vibration of the railway vehicle are manufactured and evaluated experimentally. In order to attenuate the vibration of railway vehicle, in this work, skyhook controller is designed and implemented. Control performances of MR damper for railway vehicle including car body lateral motion and acceleration of MR damper are evaluated using test rig composed of a car body and two bogies.


Author(s):  
Anria Strydom ◽  
Pieter S. Els ◽  
Sudhir Kaul

Ride comfort and handling characteristics are two important aspects of vehicle dynamics that generally require contrasting suspension settings. Different damper settings of the suspension system are required in order to meet these conflicting requirements. A magneto-rheological (MR) damper allows variable suspension settings to achieve enhanced ride comfort as well as handling characteristics by providing adaptable damping. Implementation of semi-active control requires an accurate MR damper model and online identification of model parameters. However, modeling a MR damper for a wide range of input conditions is challenging, especially when there are constraints on necessary measurements that are required for modeling. Although the available literature proposes various parametric models, many of these models are computationally expensive and are not viable for online identification. This paper presents a non-parametric model as well as a recursive model to predict the damping force of a MR damper in order to implement a semi-active control algorithm on an off-road vehicle. The results of the two models are compared to a conventional parametric model. The recursive model is used to demonstrate the significance of including the measured damping force in the model. Whereas the availability of the measured damping force yields a reasonably accurate model, the lack of measured damping force significantly impairs the recursive model.


2001 ◽  
Vol 8 (3-4) ◽  
pp. 147-155 ◽  
Author(s):  
Mehdi Ahmadian ◽  
James C. Poynor

The application of magneto rheological dampers for controlling recoil dynamics is examined, using a recoil demonstrator that includes a single-shot 50 caliber BMG rifle action and a MR damper. The demonstrator is selected such that it can adequately represent the velocities that commonly occur in weapons with a recoil system, and can be used for collecting data for analyzing the effects of MR dampers on recoil dynamics. The MR damper is designed so that it can work effectively at the large velocities commonly occurring in gun recoil, and also be easily adjusted to reasonably optimize the damper performance for the recoil demonstrator. The test results show that it is indeed possible to design and use MR dampers for recoil applications, which subject the damper to relative velocities far larger than the applications that such dampers have commonly been used for (i.e., vehicle applications). Further, the results indicate that the recoil force increases and the recoil stroke decreases nonlinearly with an increase in the damping force. Also of significance is the fact that the adjustability of MR dampers can be used in a closed-loop system such that the large recoil forces that commonly occur upon firing the gun are avoided and, simultaneously, the recoil stroke is reduced. This study points to the need for several areas of research including establishing the performance capabilities for MR dampers for gun recoil applications in an exact manner, and the potential use of such dampers for a fire out of battery recoil system.


Author(s):  
Jianqiang Yu ◽  
Xiaomin Dong ◽  
Tao Wang ◽  
Zhengmu Zhou ◽  
Yaqin Zhou

This paper presents the damping characteristics of a linear magneto-rheological (MR) damper with dual controllable ducts based on numerical and experimental analysis. The novel MR damper consisting of a dual-rod cylinder system and a MR valve is used to reduce the influences of viscous damping force and improve dynamic range. Driven by the dual-rod cylinder system, MR fluid flows in the MR valve. The pressure drop of the MR valve with dual independent controllable ducts can be controlled by tuning the current of two independent coils. Based on the mathematical model and the finite element method, the damping characteristics of the MR damper is simulated. A prototype is designed and tested on MTS machine to evaluate its damping characteristics. The results show that the working states and damping force of the MR damper can be controlled by the two independent coils.


Sign in / Sign up

Export Citation Format

Share Document