Dynamic Response of a Heat Damaged Fiber-Resin Beam Subjected to Harmonic Forcing at the Tip

2000 ◽  
Author(s):  
H. Nayeb-Hashemi ◽  
A. Harrison

Abstract A cantilever beam built of fiber-resin composite material and damaged by heat is evaluated for its dynamic response using numerical methods. The goal of research is to produce a diagnostic process in which dynamic response can be used to estimate the severity of damage to the beam. Research proceeds from formulation of the continuous media equations for vibration in a multiply segmented beam, to the development of finite element models for the beam. It is discovered that the results of these two methods are qualitatively different from the predictions of a lumped system model, in that the lumped system predicts that frictional damping should reduce the dominant frequency of vibration while the more elaborated models indicate that damping may increase the dominant frequency. It is further discovered that the size and location of damage (the geometry) are equally as important as the local stiffness and damping of the damaged region (the material properties). The results indicate that the dominant frequency of dynamic response is not a sufficient symptom for complete diagnosis of damage in the beam.

1996 ◽  
Vol 118 (4) ◽  
pp. 473-481 ◽  
Author(s):  
Michael R. Bryant ◽  
Peter J. McDonnell

Membrane inflation tests were performed on fresh, intact human corneas using a fiber optic displacement probe to measure the apical displacements. Finite element models of each test were used to identify the material properties for four different constitutive laws commonly used to model corneal refractive surgery. Finite element models of radial keratotomy using the different best-fit constitutive laws were then compared. The results suggest that the nonlinearity in the response of the cornea is material rather than geometric, and that material nonlinearity is important for modeling refractive surgery. It was also found that linear transverse isotropy is incapable of representing the anisotropy that has been experimentally measured by others, and that a hyperelastic law is not suitable for modeling the stiffening response of the cornea.


2012 ◽  
Vol 499 ◽  
pp. 238-242
Author(s):  
Li Zhang ◽  
Hong Wu ◽  
Yan Jue Gong ◽  
Shuo Zhang

Based on the 3D model of refrigeration's compressor by Pro/E software, the analyses of theoretical and experimental mode are carried out in this paper. The results show that the finite element models of compressor have high precision dynamic response characteristics and the natural frequency of the compressor, based on experimental modal analysis, can be accurately obtained, which will contribute to further dynamic designs of mechanical structures.


2014 ◽  
Vol 1648 ◽  
Author(s):  
Michael Culler ◽  
Keri A. Ledford ◽  
Jason H. Nadler

ABSTRACTRemora fish are capable of fast, reversible and reliable adhesion to a wide variety of both natural and artificial marine hosts through a uniquely evolved dorsal pad. This adhesion is partially attributed to suction, which requires a robust seal between the pad interior and the ambient environment. Understanding the behavior of remora adhesion based on measurable surface parameters and material properties is a critical step when creating artificial, bio-inspired devices. In this work, structural and fluid finite element models (FEM) based on a simplified “unit cell” geometry were developed to predict the behavior of the seal with respect to host/remora surface topology and tissue material properties.


Author(s):  
Chaodong Zhang ◽  
Jian’an Li ◽  
Youlin Xu

Previous studies show that Kalman filter (KF)-based dynamic response reconstruction of a structure has distinct advantages in the aspects of combining the system model with limited measurement information and dealing with system model errors and measurement Gaussian noises. However, because the recursive KF aims to achieve a least-squares estimate of state vector by minimizing a quadratic criterion, observation outliers could dramatically deteriorate the estimator’s performance and considerably reduce the response reconstruction accuracy. This study addresses the KF-based online response reconstruction of a structure in the presence of observation outliers. The outlier-robust Kalman filter (OKF), in which the outlier is discerned and reweighted iteratively to achieve the generalized maximum likelihood (ML) estimate, is used instead of KF for online dynamic response reconstruction. The influences of process noise and outlier duration to response reconstruction are investigated in the numerical study of a simple 5-story frame structure. The experimental work on a simply-supported overhanging steel beam is conducted to testify the effectiveness of the proposed method. The results demonstrate that compared with the KF-based response reconstruction, the proposed OKF-based method is capable of dealing with the observation outliers and producing more accurate response construction in presence of observation outliers.


Author(s):  
Ali Abolfathi ◽  
Dan J O’Boy ◽  
Stephen J Walsh ◽  
Amy M Dowsett ◽  
Stephen A Fisher

A large number of plastic clips are used in an automotive vehicle to connect the trim to the structure. These are small clips with very small masses compared to the structural elements that they connect together; however, the uncertainty in their properties can affect the dynamic response. The uncertainty arises out of their material and manufacturing tolerances and more importantly the boundary conditions. A test rig has been developed that can model the mounting condition of the clips. This allows measurement of the range of their effective stiffness and damping. Initially, the boundary condition at the structure side is replicated. The variability is found to be 7% for stiffness and 8% for damping. In order to simulate the connection of the trim side, a mount is built using a 3D printer. The variability due to the boundary condition on both sides was as large as 40% for stiffness and 36% for damping. A Monte Carlo simulation is used in order to assess the effect of the uncertainty of the clips’ properties on the vibration transfer functions of a door assembly. A simplified connection model is used in this study where only the axial degree of freedom is considered in connecting the trim to the door structure. The uncertainty in the clip stiffness and damping results in a variability in the vibration transfer function which is frequency dependent and can be as high as 10% at the resonant peaks with higher values at some other frequencies. It is shown that the effect of the uncertainty in the clips effective damping is negligible and the variability in the dynamic response is mainly due to the uncertainty in the clip’s stiffness. Furthermore, it is shown that the variability would reduce either by increasing or decreasing the effective stiffness of the clips.


2002 ◽  
Vol 124 (3) ◽  
pp. 734-744 ◽  
Author(s):  
Ihab M. Hanna ◽  
John S. Agapiou ◽  
David A. Stephenson

The HSK toolholder-spindle connection was developed to overcome shortcomings of the 7/24 steep-taper interface, especially at higher speeds. However, the HSK system was standardized quickly, without detailed evaluation based on operational experience. Several issues concerning the reliability, maintainability, and safety of the interface have been raised within the international engineering community. This study was undertaken to analytically investigate factors which influence the performance and limitations of the HSK toolholder system. Finite Element Models were created to analyze the effects of varying toolholder and spindle taper geometry, axial spindle taper length, drawbar/clamping load, spindle speed, applied bending load, and applied torsional load on HSK toolholders. Outputs considered include taper-to-taper contact pressures, taper-to-taper clearances, minimum drawbar forces, interface stiffnesses, and stresses in the toolholder. Static deflections at the end of the holder predicted by the models agreed well with measured values. The results showed that the interface stiffness and load-carrying capability are significantly affected by taper mismatch and dimensional variations, and that stresses in the toolholder near the drive slots can be quite high, leading to potential fatigue issues for smaller toolholders subjected to frequent clamping-unclamping cycles (e.g., in high volume applications). The results can be used to specify minimum toolholder material properties for critical applications, as well as drawbar design and spindle/toolholder gaging guidelines to increase system reliability and maintainability.


2000 ◽  
Author(s):  
Ihab M. Hanna ◽  
John S. Agapiou ◽  
David A. Stephenson

Abstract The HSK toolholder-spindle connection was developed to overcome shortcomings of the 7/24 steep-taper interface, especially at higher speeds. However, the HSK system was standardized quickly, without detailed evaluation based on operational experience. Several issues concerning the reliability, maintainability, and safety of the interface have been raised within the international engineering community. This study was undertaken to analytically investigate factors which influence the performance and limitations of the HSK toolholder system. Finite Element Models were created to analyze the effects of varying toolholder and spindle taper geometry, axial spindle taper length, drawbar/clamping load, spindle speed, applied bending load, and applied torsional load on HSK toolholders. Outputs considered include taper-to-taper contact pressures, taper-to-taper clearances, minimum drawbar forces, interface stiffnesses, and stresses in the toolholder. Static deflections at the end of the holder predicted by the models agreed well with measured values. The results showed that the interface stiffness and load-carrying capability are significantly affected by taper mismatch and dimensional variations, and that stresses in the toolholder near the drive slots can be quite high, leading to potential fatigue issues for smaller toolholders subjected to frequent clamping-unclamping cycles (e.g., in high volume applications). The results can be used to specify minimum toolholder material properties for critical applications, as well as drawbar design and spindle/toolholder gaging guidelines to increase system reliability and maintainability.


Author(s):  
Bai-Qiao Chen ◽  
C. Guedes Soares

The present work aims at better understanding and predicting the thermal and structural responses of aluminum components subjected to welding, contributing to the design and fabrication of aluminum ships such as catamarans, lifesaving boats, tourist ships, and fast ships used in transportation or in military applications. Taken into consideration the moving heat source in metal inert gas (MIG) welding, finite element models of plates made of aluminum alloy are established and validated against published experimental results. Considering the temperature-dependent thermal and mechanical properties of the aluminum alloy, thermo-elasto-plastic finite element analyses are performed to determine the size of the heat-affected zone (HAZ), the temperature histories, the distortions, and the distributions of residual stresses induced by the welding process. The effects of the material properties on the finite element analyses are discussed, and a simplified model is proposed to represent the material properties based on their values at room temperature.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Jongin Yang ◽  
Alan Palazzolo

Part II presents a novel approach for predicting dynamic coefficients for a tilting pad journal bearing (TPJB) using computational fluid dynamics (CFD) and finite element method (FEM), including fully coupled elastic deflection, heat transfer, and fluid dynamics. Part I presented a similarly novel, high fidelity approach for TPJB static response prediction which is a prerequisite for the dynamic characteristic determination. The static response establishes the equilibrium operating point values for eccentricity, attitude angle, deflections, temperatures, pressures, etc. The stiffness and damping coefficients are obtained by perturbing the pad and journal motions about this operating point to determine changes in forces and moments. The stiffness and damping coefficients are presented in “synchronously reduced form” as required by American Petroleum Institute (API) vibration standards. Similar to Part I, an advanced three-dimensional thermal—Reynolds equation code validates the CFD code for the special case when flow Between Pad (BP) regions is ignored, and the CFD and Reynolds pad boundary conditions are made identical. The results show excellent agreement for this validation case. Similar to the static response case, the dynamic characteristics from the Reynolds model show large discrepancies compared with the CFD results, depending on the Reynolds mixing coefficient (MC). The discrepancies are a concern given the key role that stiffness and damping coefficients serve instability and response predictions in rotordynamics software. The uncertainty of the MC and its significant influence on static and dynamic response predictions emphasizes a need to utilize the CFD approach for TPJB simulation in critical machines.


Author(s):  
PS Suresh ◽  
Niranjan K Sura ◽  
K Shankar

The dynamic responses simulation of aircraft as rigid body considering heave, pitch, and roll motions, coupled onto a tricycle landing gear arrangement is presented. Equation of motion for each landing gear consists of un-sprung mass vertical and longitudinal motions considering strut nonlinear stiffness and damping combined with strut bending flexibility. Initially, the nonlinear dynamic response model is subjected to an input of riding over staggered bump and the responses are compared with linear landing gear model. It is observed that aircraft dynamics and important landing gear events such as vertical, spin-up and spring-back are truly represented with nonlinear stiffness and damping model considering strut bending flexibility. Later, landing response analysis is performed, with the input from nonlinear flight mechanics model for several vertical descent rate cases. The aircraft and landing gear dynamic responses such as displacement, velocity, acceleration, and reaction forces are obtained. The vertical and longitudinal drag forces from the nonlinear dynamic response model is compared with “Book-case method” outlined in landing gear design technical specifications. From the reaction force ratio calculation, it is shown that for lower vertical descent rate case the predicted loads are lesser using nonlinear dynamic response model. The same model for higher vertical descent rate cases predicts higher ratios on vertical reaction for main landing gear and longitudinal reaction for nose landing gear, respectively. The scope for increase in fatigue life for low vertical descent rate landing covering major design spectrum and the concern for static strength and structural integrity consideration for higher vertical descent rate cases are discussed in the context of event monitoring on aircraft in services.


Sign in / Sign up

Export Citation Format

Share Document