Effect of Reduced Inlet Space on a Medium Flow Coefficient Centrifugal Compressor Stage

2000 ◽  
Author(s):  
William Hohlweg ◽  
Naresh Amineni

Abstract Test versus CFD predictions are presented for a medium flow coefficient, centrifugal compressor stage with 10% shorter axial stage space. Short axial length is achieved by reducing the shroud radius of curvature of the upstream return channel inlet. Situations often occur in multistage compressor applications where either rotor dynamics on new equipment or existing casing length on revamped units necessitate shorter stage space. The effect of the reduced space on various stage performance parameters is discussed referenced to the original, full length, stage design. CFD analysis for both configurations is also presented to compare with the test results and help explain the aerodynamic source of the increased losses. The complete stage is modeled on the program CFX-TASCflow beginning with a radial inlet and continuing through the impeller, diffuser and return channel.

Author(s):  
A. Hildebrandt ◽  
T. Ceyrowsky

The present paper deals with the numerical and theoretical investigations of the effect of geometrical dimensions and 1D-design parameters on the impeller pressure slope of a transonic centrifugal compressor stage for industrial process application. A database being generated during the multi-objective and multi-point design process of a high flow coefficient impeller, comprising 545 CFD (Computational Fluid Dynamics) designs is investigated in off-design and design conditions by means of RANS (Reynolds Averaged Navier Stokes) simulation of an impeller with vaneless diffuser. For high flow coefficients of 0.16 < phi < 0.18, the CFD-setup has been validated against measurement data regarding stage and impeller performance taken from MAN test rig experimental data for a centrifugal compressor stage of similar flow coefficient. The paper aims at answering the question how classical design parameter, such as the impeller blade angle distribution, impeller suction diameter and camber line length affect the local and total relative diffusion and pressure slope towards impeller stall operation. A second order analysis of the CFD database is performed by cross-correlating the CFD data with results from impeller two-zone 1D modelling and a rapid loading calculation process by Stanitz and Prian. The statistical covariance of first order 1D-analysis parameters such as the mixing loss of the impeller secondary flow, the slip factor, impeller flow incidence is analyzed, thereby showing strong correlation with the design and off-design point efficiency and pressure slope. Finally, guide lines are derived in order to achieve either optimized design point efficiency or maximum negative pressure slope characteristics towards impeller stall operation.


Author(s):  
Daniele Fiaschi ◽  
Giampaolo Manfrida ◽  
Libero Tapinassi

A design of experiment approach was used to solve problems on the new centrifugal compressor stage development test beds at the Nuovo Pignone – GE Oil&Gas premises in Florence, Italy. The company is able to provide centrifugal compressor equipment tailored to the user’s requests, with special reference to the oil & gas market. In order to provide this service, an archive of designs is available which can be adapted to different requirements: CFD is widely used to improve the turbomachinery performance, and on each new stage design extensive fluid dynamics test campaigns are routinely run, in order to confirm the expected performance. Recently inadequacy of the accuracy of the measurements became evident: the cause was traced back to thermal effects which introduced a large uncertainty in the test results, with special reference to machines having large operating Mach number, and low pressure ratio. The present work included: a) The development of a heat transfer model capable of predicting the observed trend of the experimental data. b) The improvement of the accuracy of total temperature measurements, needed to confirm the results of the model. The positive results allow the company to guarantee with increased confidence the expected performance levels.


Author(s):  
Prasad Mukkavilli ◽  
G. Rama Raju ◽  
A. Dasgupta ◽  
G. V. Ramana Murty ◽  
K. V. Jagadeshwar Chary

Diffusers are found to play a significant role in the performance of centrifugal compressors. Extensive studies have been in progress in various research laboratories for improvement of performance with various types of diffusers. One such effort for study of performance of a centrifugal compressor stage with Low Solidity Diffuser (LSD) vanes is presented in this paper. The study was conducted at a tip mach number of 0.35. An exclusive test rig was set up for carrying out these flow studies. The LSD vane is formed using standard NACA profile with marginal modification at the trailing edge region. The study encompasses the variation of setting angle of the LSD vane and the vane solidity. The effect of solidity and the setting angle on overall stage performance is evaluated in terms of flow coefficient, head coefficient and efficiency normalised with respect to these parameters for the case of vaneless diffuser at design flow. Improvement in performance as well as static pressure recovery was observed with LSD as compared to vaneless diffuser configuration. It is concluded from these studies that there is an optimum solidity and stagger angle for the given stage with LSD vanes for the chosen configuration.


2021 ◽  
Author(s):  
Louis Larosiliere ◽  
Vishal Jariwala ◽  
Kapil Panchal

Abstract Efficient and diametrically compact very high flow coefficient stages with wide operability are desirable for economic reasons in many process multistage centrifugal compressor applications. Such stages present special aerodynamic and mechanical design challenges. There is often a sizeable efficiency lapse rate as well as substantial reduction in useable operating range for traditional stages having design flow coefficients greater than 0.15 and moderate to high machine Mach numbers. This paper describes aerodynamic design and rig test validation of a very high flow coefficient (φ0 = 0.237) process centrifugal compressor stage. Some useful experience of the detailed design work required to navigate certain technical challenges and its rig test validation are reflected in the manuscript. A relatively high machine Mach number (MU ∼ 0.878) mixed-flow shrouded impeller matched with a curved radial vaneless diffuser and return channel was developed. Test results confirmed that the principal aerodynamic design intents were met or exceeded. A sensible design strategy guided by a well-anchored design method is shown to successfully extend an existing stage portfolio to very high-flow coefficients for multistage process centrifugal compressor applications.


Author(s):  
James M. Sorokes ◽  
Jason A. Kopko

The paper addresses the use of a rib style (partial height) vaned diffuser to improve the flowfield downstream of a high flow coefficient centrifugal impeller. Empirical and analytical (3-D CFD) results are presented for both the original vaneless diffuser and the replacement rib configuration. Comparisons are made between the CFD results and the data obtained through single stage rig (SSTR) testing. Comments are offered regarding the qualitative and quantitative agreement between the empirical and analytical results.


Author(s):  
T Sato ◽  
J M Oh ◽  
A Engeda

The flow in a radial vaneless diffuser downstream of a centrifugal compressor is highly complex, as the flow is turbulent, unsteady, viscous, and three-dimensional. Depending on the initial state of the end-wall boundary layers and the diffuser length, the flow may become fully developed or may separate from one of the walls. Therefore, to improve the diffuser performance, it is important to understand the flow field in the diffuser in detail. As the diffuser width is generally very small for most radial stages and an adverse pressure gradient exists, secondary flows are generated, making the flow fields more complicated. In addition, skewed boundary layers form on the wall surfaces. As flowrate is reduced, the flow field becomes more complicated and leads to rotating stall. This article presents detailed flow measurements in a vaneless diffuser of a centrifugal compressor stage with a very high flow coefficient radial impeller. Usually, centrifugal compressors with radial impellers are designed in the flow coefficient (ϕ) range ϕ = 0.01 - 0.16. Often, the need arises to design higher flow coefficient, ϕ, radial stages. Detailed measurements were carried out in the vaneless diffuser at seven radial positions downstream of a radial impeller designed for a very high flow coefficient of ϕ = 0.2. The experimental investigation was carried at four rotational speeds 13 000, 15 500, 18 000, and 20 500 r/min, but only the result of 20 500 r/min at near-design-point flowrate (5.11 kg/s) is reported in this article.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
A. Hildebrandt ◽  
T. Ceyrowsky

This paper deals with the numerical and theoretical investigations of the effect of geometrical dimensions and one-dimensional (1D)-design parameters on the impeller pressure slope of a transonic centrifugal compressor stage for industrial process application. A database being generated during the multi-objective and multipoint design process of a high flow coefficient impeller, comprising 545 computational fluid dynamics (CFD) designs is investigated in off-design and design conditions by means of Reynolds-averaged Navier–Stokes (RANS) simulation of an impeller with vaneless diffuser. For high flow coefficients of 0.16 < ϕdes < 0.18, the CFD-setup has been validated against measurement data regarding stage and impeller performance taken from MAN test rig experimental data for a centrifugal compressor stage of similar flow coefficient. This paper aims at answering the question how classical design parameter, such as the impeller blade angle distribution, impeller suction diameter, and camber line length affect the local and total relative diffusion and pressure slope toward impeller stall operation. A second-order analysis of the CFD database is performed by cross-correlating the CFD data with results from impeller two-zone 1D modeling and a rapid loading calculation process by Stanitz and Prian. The statistical covariance of first-order 1D-analysis parameters such as the mixing loss of the impeller secondary flow, the slip factor, impeller flow incidence is analyzed, thereby showing strong correlation with the design and off-design point efficiency and pressure slope. Finally, guide lines are derived in order to achieve either optimized design point efficiency or maximum negative pressure slope characteristics toward impeller stall operation.


Author(s):  
A. Panizza ◽  
R. Valente ◽  
D. Rubino ◽  
L. Tapinassi

The goal of the present study is to quantify the uncertainty in the aerodynamic performance of a centrifugal compressor stage with curvilinear impeller blades, due to impeller manufacturing variability. Impellers with curvilinear element blades allow a greater control of secondary flows with respect to impellers having ruled blades. High flow coefficient impellers for centrifugal compressors exhibit larger secondary flow than medium or low flow coefficient impellers, due to the stronger curvature of the flow path and the larger blade height for the same external diameter. Thus curvilinear blade impellers allow to improve the efficiency and range of high flow coefficient centrifugal compressor stages. As the design of these impellers is more complex than the design of ruled blade impellers, it is important to estimate the impact of the impeller manufacturing variability on the performance of the full stage. Sampling methods are often used in uncertainty propagation studies. However, sampling based approaches require a very large number of samples to have an accurate estimate of the performance uncertainty. 3D steady RANS computations are necessary to capture the impact of the geometric variability of the curvilinear blade impeller, on the stage performance. Thus, sampling methods would require an excessive computational time. In this work, the Polynomial Chaos Expansion (PCE) method with arbitrary probability distributions, implemented in DAKOTA, is used to reduce the number of runs required for the uncertainty quantification study. Manufacturing measurement data are been used to derive the histograms of the main impeller design parameters. From these histograms, numerically-generated orthogonal polynomials are computed for each parameter using a discretized Stieltjes procedure. Stochastic expansion methods such as PCE suffer from the curse of dimensionality, i.e., an exponential increase in the number of runs as the number of uncertain parameters increases. To mitigate the curse of dimensionality, sparse grids are used, which allow a drastic reduction of the number of runs. The results of the study show that the performance variability is small, thus our design with curvilinear element blades is robust with respect to impeller manufacturing variability. Using Sobol indices, we also rank the design parameters according to their impact on the performance variability.


Author(s):  
T Sato ◽  
J M Oh ◽  
A Engeda

As user demands grew for improved performance and more reliable equipment and as compressor vendors sought improved analytical and design methodologies, the application of computational fluid dynamics (CFD) in the industrial world became a necessity. Fortunately, large increases in available, economic computing power together with development of improved computational methods now provide the industrial designer with much improved analytic capability. As CFD algorithms and software have continued to be developed and refined, it remains essential that validation studies be conducted in order to ensure that the results are both sufficiently accurate and can be obtained in a robust and predictable manner. Part I of this paper presented detailed flow measurements in a vaneless diffuser of a centrifugal compressor stage with a very high flow coefficient radial impeller, where measurements were carried out in the vaneless diffuser at seven radial positions downstream of the radial impeller designed for a very high flow coefficient of ϕ = 0.2. This paper, Part II, attempts to verify and validate the results numerically.


2021 ◽  
Vol 11 (15) ◽  
pp. 6980
Author(s):  
Shuai Li ◽  
Yan Liu ◽  
Hongkun Li ◽  
Mohammad Omidi

The influence of different diffuser configurations on the flow stability and aerodynamic performance of a centrifugal compressor stage with a mass flow coefficient of 0.196 is numerically investigated. Research results show that the performance of a traditional full-height vaned diffuser (TVD) deteriorates rapidly, and a shroud-side partial vaned diffuser (SVD) displays better adaptability in off-design conditions. SVD can suppress the development of vortices generating at the diffuser leading-edge. Therefore, it can reduce the flow loss inside the stage and improve the flow stability of the stage at low mass flow rates. The unsteady analysis for TVD and SVD shows that the stall cell propagates at about 35.7% of impeller rotational speed in the semi-vaneless space and diffuser passages. Furthermore, the internal flow in TVD and SVD is studied by employing the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) methods. The flow loss and instability mechanism in the stage are consequently revealed more comprehensively.


Sign in / Sign up

Export Citation Format

Share Document