Thermal Assessment and Enhancement of Molded Array (MAP) PBGA Packages for Handheld Telecommunication Applications

2000 ◽  
Author(s):  
V. H. Adams ◽  
V. A. Chiriac ◽  
T.-Y. Tom Lee

Abstract Computational Fluid Dynamics (CFD) simulations were conducted to characterize the thermal performance of Molded Array Plastic Ball Grid Array (MAP PBGA) packages for hand-held applications. Due to size constraints, these PBGA packages tend to have fine pitch solder ball arrays and small overall size. Thermal analysis is required to assess the design risks associated with this trend toward smaller size and increasing power dissipation requirements. A conjugate heat transfer problem, in which radiative losses from the exposed surfaces of the package and the printed wiring board to the walls of the wind tunnel, was solved for horizontal natural convection cooling conditions. Thermal model assumptions and development for the MAP PBGA package are provided. The model is benchmarked with measurements obtained for a 64 I/O 0.8 mm pitch, 8 mm MAP PBGA. Predictions for junction-to-ambient thermal resistance were within 10% of measured values. Baseline simulations were conducted for 0.8 mm pitch MAP PBGA packages with substrate/die size combinations in the range of 6 to 12 mm substrate size and 3.81 to 7.62 mm die size. Junction-to-ambient thermal resistances varied over the range of 28.8 °C/W to 62.4 °C/W. Methods to improve thermal performance of these packages were investigated. Previous work indicated that effective conduction to the substrate by heat spreaders, metallic lids, mold compound, heat sinks, and their combinations promoted thermal performance. A necessary further step is to understand how effective area for heat spreading inside the package affects its thermal behavior, while varying the die size for package configurations with and without heat spreader. Studies were conducted to evaluate thermal performance improvement through the use of a copper heat spreader on the package top surface as it is affected by die size, package size, and substrate effective thermal conductivity. Substrate effective thermal conductivity is varied through the use of two and four layer substrates with thermal vias under the die. Results show a modest 1% to 15% reduction in junction-to-ambient thermal resistance for the MAP PBGA package sizes of interest.

2004 ◽  
Vol 126 (4) ◽  
pp. 449-456 ◽  
Author(s):  
K. Ramakrishna ◽  
T.-Y. Tom Lee

Enhancements to thermal performance of FC-PBGA packages due to underfill thermal conductivity, controlled collapse chip connection (C4) pitch, package to printed wiring board (PWB) interconnection through thermal balls, a heat spreader on the backside of the die, and an overmolded die with and without a heat spreader have been studied by solving a conjugate heat transfer problem. These enhancements have been investigated under natural and forced convection conditions for freestream velocities up to 2 m/s. The following ranges of parameters have been covered in this study: substrate size: 25–35 mm, die size: 6.19×7.81 mm (48 mm2 area) and 9.13×12.95 mm (118 mm2 area), underfill thermal conductivity: 0.6–3.0 W/(m K), C4 pitch: 250 μm and below, no thermal balls to 9×9 array of thermal balls on 1.27 mm square pitch, and with copper heat spreader on the back of a bare and an overmolded die. Based on our previous work, predictions in this study are expected to be within ±10% of measured data. The conclusions of the study are: (i) Thermal conductivity of the underfill in the range 0.6 to 10 W/(m K) has negligible effect on thermal performance of FC-PBGA packages investigated here. (ii) Thermal resistances decrease 12–15% as C4 pitch decreases below 250 μm. This enhancement is smaller with increase in die area. (iii) Thermal balls connected to the PTHs in the PWB decrease thermal resistance of the package by 10–15% with 9×9 array of thermal balls and PTHs compared to no thermal balls. The effect of die size on this enhancement is more noticeable on junction to board thermal resistance, Ψjb, than the other two package thermal metrics. (iv) Heat spreader on the back of the die decreases junction-to-ambient thermal resistance, Θja, by 6% in natural convection and by 25% in forced convection. (v) An overmolded die with a heat spreader provides better a thermal enhancement than a heat spreader on a bare die for freestream velocities up to about 1 m/s. Beyond 1 m/s, a heat spreader on bare die has better thermal performance.


Author(s):  
K. Ramakrishna ◽  
T.-Y. Tom Lee

Flip-chip plastic ball grid array (FC-PBGA) packages are fast becoming the industry norm, in particular in the performance and cost driven consumer electronics sector. Since high thermal conductivity (k∼15–20 W/(m K)) ceramic substrate is replaced by a low conductivity (k∼0.2–0.5 W/(m K)) organic substrate in the FC-PBGA packages, enhancement of thermal performance of these packages to meet ever increasing demands is crucial for their wide spread use. In this study, enhancements to thermal performance of FC-PBGA packages due to material and design changes and external means such as heat spreaders and overmolding of the packages have been evaluated by solving a conjugate heat transfer models using the methods of computational fluid dynamic. The thermal enhancements evaluated in this study include the effect of thermal conductivity of the chip to package interconnect due to change in underfill material and the C4 bump pitch, effect of package to printed wiring board (PWB) interconnection through the use of thermal balls, effect of a heat spreader on the backside of the die, and overmolding the die without and with a heat spreader. Thermal performance of the FC-PBGA packages have been studied using junction to ambient thermal resistance, Θja, junction-to-board thermal resistance Ψjb, and junction to case thermal resistance ΨjT under natural and forced convection for freestream velocities up to 2 m/s and the for following ranges of parameters: Substrate size: 25 to 35 mm, die size: 6.19×7.81 mm (48 mm2 area) and 9.13×12.95 mm (118 mm2 area), C4 pitch: 250 mm, 150 mm and below, underfill material thermal conductivity: 0.6 to 3.0 W/(m K), no thermal balls between the package and the PWB to 9×9 array of thermal balls on 1.27 mm square pitch, and with copper heat spreader on the back of the bare and overmolded die. Based on previous experience, predictions in this study are expected to be within ±10% of measured data. The following conclusions are drawn from this study: 1. It is concluded that the thermal conductivity of the underfill materials in the range 0.6 to 10 W/(m K) is negligible. 2. It is also concluded that the bump pitch can decrease thermal resistances by 12 to 15 %. The change may be smaller with large die area. 3. Thermal balls (C5) connected to the PTHs in the PWB can decrease thermal resistance by about 10% to 15% as the number of thermal balls & PTHs increase zero to 9×9 on 1.27 mm pitch. The effect die size on this thermal enhancement is more noticeable on Ψjb. 4. Heat spreader on the back of the die decreases Θja by a small amount (6–7%) in natural convection and a large amount, about 25% in forced convection. 5. Overmolded die with heat spreader on the top of the overmold provides better thermal enhancement than heat spreader alone up to about 1 m/s. Beyond 1 m/s, heat spreader (without overmold) performs slightly better.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1157-1171 ◽  
Author(s):  
Sangbeom Cho ◽  
Venky Sundaram ◽  
Rao Tummala ◽  
Yogendra Joshi

Purpose – The functionality of personal mobile electronics continues to increase, in turn driving the demand for higher logic-to-memory bandwidth. However, the number of inputs/outputs supported by the current packaging technology is limited by the smallest achievable electrical line spacing, and the associated noise performance. Also, a growing trend in mobile systems is for the memory chips to be stacked to address the growing demand for memory bandwidth, which in turn gives rise to heat removal challenges. The glass interposer substrate is a promising packaging technology to address these emerging demands, because of its many advantages over the traditional organic substrate technology. However, glass has a fundamental limitation, namely low thermal conductivity (∼1 W/m K). The purpose of this paper is to quantify the thermal performance of glass interposer-based electronic packages by solving a multi-scale heat transfer problem for an interposer structure. Also, this paper studies the possible improvement in thermal performance by integrating a fluidic heat spreader or vapor chamber within the interposer. Design/methodology/approach – This paper illustrates the multi-scale modeling approach applied for different components of the interposer, including Through Package Vias (TPVs) and copper traces. For geometrically intricate and repeating structures, such as interconnects and TPVs, the unit cell effective thermal conductivity approach was used. For non-repeating patterns, such as copper traces in redistribution layer, CAD drawing-based thermal resistance network analysis was used. At the end, the thermal performance of vapor chamber integrated within a glass interposer was estimated by using an enhanced effective thermal conductivity, calculated from the published thermal resistance data, in conjunction with the analytical expression for thermal resistance for a given geometry of the vapor chamber. Findings – The limitations arising from the low thermal conductivity of glass can be addressed by using copper structures and vapor chamber technology. Originality/value – A few reports can be found on thermal performance of glass interposers. However thermal characteristics of glass interposer with advanced cooling technology have not been reported.


Author(s):  
Nhat Minh Nguyen ◽  
Eric Monier-Vinard ◽  
Najib Laraqi ◽  
Valentin Bissuel ◽  
Olivier Daniel

Purpose The purpose of this paper is to supply an analytical steady-state solution to the heat transfer equation permitting to fast design investigation. The capability to efficiently transfer the heat away from high-powered electronic devices is a ceaseless challenge. More than ever, the aluminium or copper heat spreaders seem less suitable for maintaining the component sensitive temperature below manufacturer operating limits. Emerging materials, such as annealed pyrolytic graphite (APG), have proposed a new alternative to conventional solid conduction without the gravity dependence of a heat-pipe solution. Design/methodology/approach An APG material is typically sandwiched between a pair of aluminium sheets to compose a robust graphite-based structure. The thermal behaviour of that stacked structure and the effect of the sensitivity of the design parameters on the effective thermal performances is not well known. The ultrahigh thermal conductivity of the APG core is restricted to in-plane conduction and can be 200 times higher than its through-the-thickness conductivity. So, a lower-than-anticipated cross-plane thermal conductivity or a higher-than-anticipated interlayer thermal resistance will compromise the component heat transfer to a cold structure. To analyse the sensitivity of these parameters, an analytical model for a multi-layered structure based on the Fourier series and the superposition principle was developed, which allows predicting the temperature distribution over an APG flat-plate depending on two interlayer thermal resistances. Findings The current work confirms that the in-plane thermal conductivity of APG is among the highest of any conduction material commonly used in electronic cooling. The analysed case reveals that an effective thermal conductivity twice as higher than copper can be expected for a thick APG sheet. The relevance of the developed analytical approach was compared to numerical simulations and experiments for a set of boundary conditions. The comparison shows a high agreement between both calculations to predict the centroid and average temperatures of the heating sources. Further, a method dedicated to the practical characterization of the effective thermal conductivity of an APG heat-spreader is promoted. Research limitations/implications The interlayer thermal resistances act as dissipation bottlenecks which magnify the performance discrepancy. The quantification of a realistic value is more than ever mandatory to assess the APG heat-spreader technology. Practical implications Conventional heat spreaders seem less suitable for maintaining the component-sensitive temperature below the manufacturer operating limits. Having an in-plane thermal conductivity of 1,600 W.m−1.K−1, the APG material seems to be the next paradigm for solving endless needs of a thermal designer. Originality/value This approach is a practical tool to tailor sensitive parameters early to select the right design concept by taking into account potential thermal issues, such as the critical interlayer thermal resistance.


2020 ◽  
pp. 174425912098003
Author(s):  
Travis V Moore ◽  
Cynthia A. Cruickshank ◽  
Ian Beausoleil-Morrison ◽  
Michael Lacasse

The purpose of this paper is to investigate the potential for calculation methods to determine the thermal resistance of a wall system containing vacuum insulation panels (VIPs) that has been experimentally characterised using a guarded hot box (GHB) apparatus. The VIPs used in the wall assembly have not been characterised separately to the wall assembly, and therefore exact knowledge of the thermal performance of the VIP including edge effect is not known. The calculations and simulations are completed using methods found in literature as well as manufacturer published values for the VIPs to determine the potential for calculation and simulation methods to predict the thermal resistance of the wall assembly without the exact characterisation of the VIP edge effect. The results demonstrate that disregarding the effect of VIP thermal bridges results in overestimating the thermal resistance of the wall assembly in all calculation and simulation methods, ranging from overestimates of 21% to 58%. Accounting for the VIP thermal bridges using the manufacturer advertised effective thermal conductivity of the VIPs resulted in three methods predicting the thermal resistance of the wall assembly within the uncertainty of the GHB results: the isothermal planes method, modified zone method and the 3D simulation. Of these methods only the 3D simulation can be considered a potential valid method for energy code compliance, as the isothermal planes method requires too drastic an assumption to be valid and the modified zone method requires extrapolating the zone factor beyond values which have been validated. The results of this work demonstrate that 3D simulations do show potential for use in lieu of guarded hot box testing for predicting the thermal resistance of wall assemblies containing both VIPs and steel studs. However, knowledge of the VIP effective thermal conductivity is imperative to achieve reasonable results.


Author(s):  
Vadim Gektin ◽  
Sai Ankireddi ◽  
Jim Jones ◽  
Stan Pecavar ◽  
Paul Hundt

Thermal Interface Materials (TIMs) are used as thermally conducting media to carry away the heat dissipated by an energy source (e.g. active circuitry on a silicon die). Thermal properties of these interface materials, specified on vendor datasheets, are obtained under conditions that rarely, if at all, represent real life environment. As such, they do not accurately portray the material thermal performance during a field operation. Furthermore, a thermal engineer has no a priori knowledge of how large, in addition to the bulk thermal resistance, the interface contact resistances are, and, hence, how much each influences the cooling strategy. In view of these issues, there exists a need for these materials/interfaces to be characterized experimentally through a series of controlled tests before starting on a thermal design. In this study we present one such characterization for a candidate thermal interface material used in an electronic cooling application. In a controlled test environment, package junction-to-case, Rjc, resistance measurements were obtained for various bondline thicknesses (BLTs) of an interface material over a range of die sizes. These measurements were then curve-fitted to obtain numerical models for the measured thermal resistance for a given die size. Based on the BLT and the associated thermal resistance, the bulk thermal conductivity of the TIM and the interface contact resistance were determined, using the approach described in the paper. The results of this study permit sensitivity analyses of BLT and its effect on thermal performance for future applications, and provide the ability to extrapolate the results obtained for the given die size to a different die size. The suggested methodology presents a readily adaptable approach for the characterization of TIMs and interface/contact resistances in the industry.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
H. M. Yin ◽  
G. H. Paulino ◽  
W. G. Buttlar ◽  
L. Z. Sun

By means of a fundamental solution for a single inhomogeneity embedded in a functionally graded material matrix, a self-consistent model is proposed to investigate the effective thermal conductivity distribution in a functionally graded particulate nanocomposite. The “Kapitza thermal resistance” along the interface between a particle and the matrix is simulated with a perfect interface but a lower thermal conductivity of the particle. The results indicate that the effective thermal conductivity distribution greatly depends on Kapitza thermal resistance, particle size, and degree of material gradient.


2014 ◽  
Vol 18 (5) ◽  
pp. 1613-1618 ◽  
Author(s):  
Jie Fan ◽  
Na Zhu ◽  
Zhi Liu ◽  
Qian Cheng ◽  
Yong Liu

Warm retention property of fabric is one of the most important factors for clothing comfortability. The worm retention efficiency of a multilayer fabric with hierarchic inner structure was investigated based on its geometric feature. The thermal resistance of the multilayer fabric increases as the layer of the fabric increases.


2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000062-000066 ◽  
Author(s):  
T. Welker ◽  
S. Günschmann ◽  
N. Gutzeit ◽  
J. Müller

The integration density in semiconductor devices is significantly increased in the last years. This trend is already described by Moore's law what forecasts a doubling of the integration density every two years. This evolution makes greater demands on the substrate technology which is used for the first level interconnect between the semiconductor and the device package. Higher pattern resolution is required to connect more functions on a smaller chip. Also the thermal performance of the substrate is a crucial issue. The increased integration density leads to an increased power density, what means that more heat has to dissipate on a smaller area. Thus, substrates with a high thermal conductivity (e. g. direct bonded copper (DBC)) are utilized which spread the heat over a large area. However, the reduced pattern resolution caused by thick metal layers is disadvantageous for this substrate technology. Alternatively, low temperature co-fired ceramic (LTCC) can be used. This multilayer technology provides a high pattern resolution in combination with a high integration grade. The poor thermal conductivity of LTCC (3 … 5 W*m−1*K−1) requires thermal vias made of silver paste which are placed between the power chip and the heat sink and reduce the thermal resistance of the substrate. The via-pitch and diameter is limited by the LTCC technology, what allows a maximum filling grade of approx. 20 to 25 %. Alternatively, an opening in the ceramic is created, to bond the chip directly to the heat sink. This leads to technological challenges like the CTE mismatch between the chip and the heat sink material. Expensive materials like copper molybdenum composites with matched CTE have to be used. In the presented investigation, a thick silver tape is used to form a thick silver heat spreader through the LTCC substrate. An opening is structured by laser cutting in the LTCC tape and filled with a laser cut silver tape. After lamination, the substrate is fired using a constraint sintering process. The bond strength of the silver to LTCC interface is approx. 5.6 MPa. The thermal resistance of the silver structure is measured by a thermal test chip (Delphi PST1, 2.5 mm × 2.5 mm) glued with a high thermal conducting epoxy to the silver structure. The chip contains a resistor and diodes to generate heat and to determine the junction temperature respectively. The backside of the test structure is temperature stabilized by a temperature controlled heat sink. The resulting thermal resistance is in the range of 1.1 K/W to 1.5 K/W depending on the length of silver structure (5 mm to 7 mm). Advantages of the presented heat spreader are the low thermal resistance and the good embedding capability in the co-fire LTCC process.


Sign in / Sign up

Export Citation Format

Share Document