Improved Crashworthy Aircraft Seat Design

Author(s):  
Kash Kasturi ◽  
Peter Kwok

An innovative transport aircraft passenger seat concept for superior occupant protection, meeting all structural requirements used in typical seat designs was developed. This was accomplished with the use of new energy-absorbing structural members and precise control of seat deformation characteristics. Advanced dynamic finite element modeling technique was utilized to analyze the integrated design of the seat, occupants, restraints and energy absorbing elements. Results from certification tests on an existing seat design were used to validate the analytical model. Verification studies have shown good correlation between the analytical simulations and the test data. In addition, further improvements to occupant protection of this new aircraft seat design were accomplished by incorporating the seat back tilt mechanism coupled with the use of shoulder belt. The seat back tilt mechanism utilizes similar energy-absorption concept and provides additional energy absorption while being pulled forward by the shoulder belt.

Author(s):  
Muhammad Ali ◽  
Eboreime Ohioma ◽  
Khairul Alam

Square tubes are primarily used in automotive structures to absorb energy in the event of an accident. The energy absorption capacity of these structural members depends on several parameters such as tube material, wall thickness, axial length, deformation modes, locking strain, crushing stress, etc. In this paper, the work presented is a continuation of research conducted on exploring the effects of the introduction of cellular core in tubular structures under axial compressive loading. Here, the crushing response of composite cellular core tube was numerically studied using ABAQUS/Explicit module. The energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, crushing stroke, and energy curves were discussed. The composite cellular core tube shows promise for improving the crashworthiness of automobiles.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lu Chen ◽  
Qingwen Li ◽  
Jianming Yang ◽  
Lan Qiao

With the increase in mining depth, the deep hard rock mass is under threat of rockburst under high geostress, high temperature, high osmotic pressure, and strong disturbance. To reduce the probability and strength of rockburst, a new energy-absorbing bolt for guaranteeing the stability of deep hard rock mass was developed utilizing the energy absorption characteristic of high-damping rubber. To analyze the practicability and obtain the quantified behaviors of this new energy-absorbing bolt, a series of impact tests on specimens of high-damping rubber, granite, and granite–rubber composite specimens was carried out by a split Hopkinson pressure bar (SHPB) method. Further, considering the different working depths with different rock temperatures, the dynamic energy-absorbing characteristics of high-damping rubber under different temperatures were tested. The testing results show that the new energy-absorbing bolt can consume the storage energy in host rock effectively, and the environmental temperature will produce certain effects on the energy-consuming rate. In addition, the optimal energy-absorbing thickness–diameter ratio of high-damping rubber was confirmed by SHPB tests.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hanjie Hu ◽  
Bing Du ◽  
Wenkai Jiang ◽  
Changqi Zheng ◽  
Ning Zhu ◽  
...  

In this study, a type of tube with an open-hole AL alloy tube nested outside the CFRP tube is designed and fabricated, and the energy absorbing characteristics and failure mechanism under quasi-static axial compression are discussed. It is found that the summing tube composed of two single tubes has less energy absorption than the hybrid tube. Numerical simulation and theoretical models are used to evaluate the influence of the hybrid tube in terms of cost and weight, and it is found that under the same energy absorption, the hybrid tube has a weight reduction of 39.2% compared to the open-hole AL tube, which was 25.7% of the cost of the CFRP tube. This hybrid structure has potential as the load-carrying and energy absorption tube.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 881
Author(s):  
Adrian Dubicki ◽  
Izabela Zglobicka ◽  
Krzysztof J. Kurzydłowski

Numerous engineering applications require lightweight structures with excellent absorption capacity. The problem of obtaining such structures may be solved by nature and especially biological structures with such properties. The paper concerns an attempt to develop a new energy-absorbing material using a biomimetic approach. The lightweight structure investigated here is mimicking geometry of diatom shells, which are known to be optimized by nature in terms of the resistance to mechanical loading. The structures mimicking frustule of diatoms, retaining the similarity with the natural shell, were 3D printed and subjected to compression tests. As required, the bio-inspired structure deformed continuously with the increase in deformation force. Finite element analysis (FEA) was carried out to gain insight into the mechanism of damage of the samples mimicking diatoms shells. The experimental results showed a good agreement with the numerical results. The results are discussed in the context of further investigations which need to be conducted as well as possible applications in the energy absorbing structures.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
A. Sulis

A very important aspect in the planning, design, and maintenance of a harbor is to determine the response of the harbor basin to incident waves. The Saras harbor in South Sardinia (Italy) has been experiencing significant wave disturbance that affects the safety of mooring and operational activities. In the framework of a large research, this paper summarises a comprehensive description of new energy absorbing structures that can be seen as an efficient alternative to more traditional structures when limited by economic or technical constraints. Specifically, the paper presents the results of a graphical preliminary approach and a numerical modelling that solves the enhanced Boussinesq equations in two horizontal dimensions.


Author(s):  
John D. Reid ◽  
Ronald K. Faller ◽  
Jim C. Holloway ◽  
John R. Rohde ◽  
Dean L. Sicking

For many years, containment for errant racing vehicles traveling on oval speedways has been provided through rigid, concrete containment walls placed around the exterior of the track. However, accident experience has shown that serious injuries and fatalities may occur through vehicular impacts into these nondeformable barriers. Because of these injuries, the Indy Racing League and the Indianapolis Motor Speedway, later joined by the National Association for Stock Car Auto Racing (NASCAR), sponsored the development of a new barrier system by the Midwest Roadside Safety Facility at the University of Nebraska–Lincoln to improve the safety of drivers participating in automobile racing events. Several barrier prototypes were investigated and evaluated using both static and dynamic component testing, computer simulation modeling with LS-DYNA (a nonlinear finite element analysis code), and 20 full-scale vehicle crash tests. The full-scale crash testing program included bogie vehicles, small cars, and a full-size sedan, as well as Indy Racing League open-wheeled cars and NASCAR Winston Cup cars. A combination steel tube skin and foam energy-absorbing barrier system, referred to as the SAFER (steel and foam energy reduction) barrier, was successfully developed. Subsequently, the SAFER barrier was installed at the Indianapolis Motor Speedway in advance of the running of the 2002 Indianapolis 500 race. From the results of the laboratory testing program as well as analysis of the accidents into the SAFER barrier occurring during practice, qualification, and the race, the SAFER barrier has been shown to provide improved safety for drivers impacting the outer walls.


Sign in / Sign up

Export Citation Format

Share Document