Characterization of Heat Sink Flow Bypass in Plate Fin Heat Sinks

Author(s):  
W. Leonard ◽  
P. Teertstra ◽  
J. R. Culham ◽  
Ahmed Zaghol

Experimental testing has been performed on two plate fin heat sinks in order to examine flow bypass phenomenon. The present study examines pressure drop and thermal resistance as well as flow velocities within the heat sinks. Tests are performed for bypass channel/fin height ratios of 0.25, 0.5, 0.75 and 1 with approach velocities from 2 to 8 m/s. By examining flow behavior within the heat sinks and the bypass channel, a model for predicting flow bypass is presented that incorporates only the significant pressure drop mechanisms that affect the flow path. This model allows for a simple prediction of flow bypass for plate fin heat sinks based solely on geometry. For all of the heat sinks tested the agreement between model and experimental data is ∓8%.

Author(s):  
M. P. Wang ◽  
T. Y. Wu ◽  
J. T. Horng ◽  
C. Y. Lee ◽  
Y. H. Hung

A series of experimental investigations with a stringent measurement method on the study of the fluid flow behavior for confined compact heat sinks in forced convection have been successfully conducted. In the present study, a theoretical model to effectively predict the velocity and pressure drop for partially-confined heat sinks has been successfully developed. The air velocities flowing into heat sink Us through side bypass U1 and top bypass U2 for various 0.47<H/Hc<1 ratios are evaluated, where H/Hc is the ratio of the heat sink height to channel height. The maximum and average deviations of the velocities predicted by the present model from the experimental data are less than 20.31% and 13.13%, respectively, for confined compact heat sinks. Besides, the results show a good agreement between the predicted results and the experimental data of the pressure drop for the cases of H/Hc = 1. Nevertheless, the relative deviation of the predictions from the experimental data becomes more significant with decreasing H/Hc ratio, i.e., increasing the top bypass of confined compact heat sink. A new modified correlation of pressure drop including the H/Hc effect is presented. The maximum and average deviations of the results predicted by the new correlation from the experimental data are 14.48% and 7.72%, respectively.


Author(s):  
M. P. Wang ◽  
H. T. Chen ◽  
J. T. Horng ◽  
T. Y. Wu ◽  
P. L. Chen ◽  
...  

An effective method for predicting the optimal thermal performance of partially-confined compact heat sinks under multi-constraints of pressure drop and heat sink mass has been successfully developed. The design variables of PPF compact heat sinks include: heat sink fin and base material, thickness of heat sink base, heat flux, channel top bypass and inlet flow velocity. A total of 108 experimental cases for confined forced convection are designed by the Central Composite Design (CCD) method. According to the results in ANOVA, a sensitivity analysis for the design factors is performed. From the analysis, the effect of inlet flow velocity, which has the contribution percentage of 86.24%, dominates the thermal performance. The accuracies of the quadratic RSM models for both thermal resistance and pressure drop have been verified by comparing the predicted response values to the actual experimental data. The maximum deviations of thermal resistance and pressure drop are 9.41% and 7.20% respectively. The Response Surface Methodology is applied to establish analytical models of the thermal resistance and pressure drop constraints in terms of the key design factors with a CCD experimental design. By employing the Sequential Quadratic Programming technique, a series of constrained optimal designs can be efficiently performed. The numerical optimization results for four cases under different constraints are obtained, and the comparisons between these predicted optimal designs and those measured by the experimental data are made with a satisfactory agreement.


2021 ◽  
pp. 81-81
Author(s):  
Zulfiqar Khattak ◽  
Hafiz Ali

Heat dissipation is becoming more and more challenging with the preface of new electronic components having staggering heat generation levels. Present day solutions should have optimized outcomes with reference to the heat sink scenarios. The experimental and theoretical results for plate type heat sink based on mathematical models have been presented in the first part of the paper. Then the parametric optimization (topology optimization) of plate type heat sink using Levenberg-Marquardt technique employed in the COMSOL Multiphysics? software is discussed. Thermal resistance of heat sink is taken as objective function against the variable length in a predefined range. Single as well as multi-parametric optimization of plate type heat sink is reported in the context of pressure drop and air velocity (Reynolds number) inside the tunnel. The results reported are compared with the numerical modeled data and experimental investigation to establish the conformity of results for applied usage. Mutual reimbursements of greater heat dissipation with minimum flow rates are confidently achievable through balanced, heat sink geometry as evident by the presented simulation outcome. About 12% enhancement in pressure drop and up to 51% improvement in thermal resistance is reported for the optimized plate fin heat sink as per data manifested.


Author(s):  
Jose-Luis Gonzalez-Hernandez ◽  
Abel Hernandez-Guerrero ◽  
Carlos Rubio-Jimenez ◽  
Cuauhtemoc Rubio-Arana

In this work the performance of pin-fin heat sinks having an unconventional fin profile is compared with the use of cylindrical fins. The fin profile is a sinusoidal function and a staggered array is considered. The overall thermal resistance and total pressure drop are reported for the pin-fin heat sinks. The effect of using a wave function for the fin is studied for different number of complete waves along the height of the fins and a geometric parameter defined as the ratio of the higher to the lower radius of the fins is proposed. The study is carried out for two different inlet velocities, and for two different fin densities, corresponding to 5×5 and 7×7 arrays. An entropy generation analysis for each pin fin heat sink configuration is carried out and reported. The results of the present analysis reveal that the proposed geometry has an improvement as compared to the conventional heat sinks profiles when there is a high number of waves per fin. The effect of the geometric parameters defined in this study for the thermal and hydraulic performance is identified and discussed as well.


Author(s):  
Yin Lam ◽  
Nicole Okamoto ◽  
Younes Shabany ◽  
Sang-Joon John Lee

Heat removal is an increasing engineering challenge for higher-density packaging of circuit components. Microchannel heat sinks with liquid cooling have been investigated to take advantage of high surface-to-volume ratio and higher heat capacity of liquids relative to gases. This study experimentally investigated heat removal by liquid cooling through shallow copperclad cavities with staggered pin-fin arrays. Cavities with pin-fins were fabricated by chemical etching of a copperclad layer (nominally 105 μm thick) on a printed-circuit substrate (FR-4). The overall etched cavity was 30 mm wide, 40 mm long, and 0.1 mm deep. The pins were 1.1 mm in diameter and were distributed in a staggered arrangement. The cavity was sealed with a second copperclad substrate using an elastomer gasket. This assembly was then connected to a syringe pump delivery system. Deionized water was used as the working fluid, with volumetric flow rate up to 1.5 mL/min. The heat sink was subjected to a uniform heat flux of 5 W on the underside. Performance of the heat sink was evaluated in terms of pressure drop and the convection thermal resistance. Pressure drop across the heat sinks was less than 10 kPa, dominated by wall surface area rather than the small surface area contributed by cylindrical pins. At low flow rate, caloric thermal resistance dominated the overall thermal resistance of the heat sink. When compared to a microchannel without pins, the pin-fin microchannel reduced convective thermal resistance of the heat sink by approximately a factor of 4.


Author(s):  
H. T. Chen ◽  
T. Y. Wu ◽  
P. L. Chen ◽  
S. F. Chang ◽  
Y. H. Hung

The pressure drop and heat transfer characteristics for partially-confined heat sinks with different fin types, including plain-plate fin, pin-fin array and strip-fin array, in ducted flow are investigated. The main focus of the experimental results is on pressure drop and heat transfer characteristics of generalized heat sink in ducted flow with considering the flow top- and side-bypass effects. The parameters controlled in the study are the heating load (Qt), inlet flow velocity (Ui), the ratio of heat sink height to duct height (Hs/Hc), and the ratio of heat sink width to duct width (Ws/Wc). The ranges of parameters studied are Ui=2~12m/s, Qt=10~30W, Ws/Wc = 0.6~1, and Hs/Hc = 0.5~1. In the present study, an effective friction factor related to the overall pressure drop is defined; and a new experimental correlation for the effective friction factor for generalized heat sinks in ducted flow with top- and side-bypass effects is presented. A satisfactory agreement between the experimental data and the theoretical predictions is achieved with the maximum and average deviations of 17.2% and 9.6%, respectively. As for convective heat transfer performance, the average Nusselt number is not significantly affected by Grashof number; while, it increases significantly with increasing Reynolds number. Furthermore, the thermal performance increases with increasing top or side confinement ratio (Hs/Hc or Ws/Wc). The best thermal performance occurred at the fully-confined condition, i.e., Hs/Hc=1, Ws/Wc = 1. Based on all the experimental data for three types of partially-confined heat sinks, a generalized correlation of average Nusselt number for partially-confined heat sinks in ducted flow in terms of Re, Hs/Hc and Ws/Wc is presented. The maximum and average deviations of the results obtained by the experimental data from the theoretical prediction are 12.4% and 7.5%, respectively.


Author(s):  
Arun K. Karunanithi ◽  
Fatemeh Hassanipour

Previous studies have shown that stacked multi-layer mini-channels heat sinks with square or circular channels have advantages over traditional single layered channels in terms of both pressure drop and thermal resistance. In this work, porous media is used in the multi-layered stacked mini-channels instead of square or rectangular channels and the effect of the same on pressure drop and thermal performance is studied. Porosity scaling is done between the layers of porous media and is compared with unscaled stacked multilayer channel. Porosity scaling allows the porosity to vary from one layer to the next layer and could result in a lower pressure drop and better thermal performance.


Author(s):  
Anas Alkhazaleh ◽  
Mohamed Younes El-Saghir Selim ◽  
Fadi Alnaimat ◽  
Bobby Mathew

Abstract In this work, an investigation of the heat sink performance employing sinusoidal microchannels embedded with pin fins was conducted. The effect of the sine wave frequency, the pin fins’ diameter, and the hydraulic diameter of the microchannel are studied. The results are quantified in terms of thermal resistance and pressure drop. The study was done using Reynolds numbers varying from 250 to 2000. As Reynolds number increases, the heat sink’s thermal resistance decreased while the pressure drop increased accordingly for all scenarios. The sinusoidal microchannels showed better performance — lower thermal resistance — but with the cost of higher pressure drop compared to the straight microchannel heat sink. The heat sink’s performance was improved by increasing the frequency, diameter of pin fins, and hydraulic diameter; however, this reduction in thermal resistance was associated with an increase in pressure drop. The reduction in thermal resistance of the different configurations of the sinusoidal microchannels was between 17% and 69% compared to the straight microchannel heat sink.


2005 ◽  
Vol 2 (2) ◽  
pp. 122-131
Author(s):  
Pradeep Hegde ◽  
K.N. Seetharamu ◽  
P.A. Aswatha Narayana ◽  
Zulkifly Abdullah

Stacked microchannel heat sinks with two-phase flow have been analyzed using the Finite Element Method (FEM). The present method is a simple and practical approach for analyzing the thermal performance of single or multi layered microchannel heat sinks with either single or two-phase flow. A unique 10 noded finite element is used for the channel discretization. Two-phase thermal resistance, pressure drop and pumping power of single, double and triple stack microchannel heat sinks are determined at different base heat fluxes ranging from 150 W/cm2 to 300 W/cm2. The temperature distribution along the length of the microchannel is also plotted. It is found that stacked microchannel heat sinks with two-phase flow are thermally more efficient than two-phase single layer microchannel heat sinks, both in terms of thermal resistance and pumping power requirements. It is observed that the thermal resistance of a double stack microchannel heat sink with two-phase flow is about 40% less than that for a single stack heat sink. A triple stack heat sink yields a further 20% reduction in the thermal resistance and at the same time operates with about 30% less pumping power compared to a single stack heat sink. The effect of channel aspect ratio on the thermal resistance and pressure drop of stacked microchannel heat sinks with two-phase flow are also studied.


Author(s):  
T. J. John ◽  
B. Mathew ◽  
H. Hegab

The need for dissipating heat from microsystems has increased drastically in the last decade. Several methods of heat dissipation using air and liquids have been proposed by many studies, and pin-fin micro heat sinks are one among them. Researchers have developed several effective pin-fin structures for use in heat sinks, but not much effort has been taken towards the optimization of profile and dimensions of the pin-fin. In this paper the authors studied the effect of different pin-fin shapes on the thermal resistance and pressure drop in a specific micro heat-sink. Optimization subjected to two different constraints is studied in this paper. The first optimization is subjected to constant flow rate and the second one is subjected to constant pressure drop. Both optimization processes are carried out using computer simulations generated using COVENTORWARE™. Two of the best structures from each of these optimization studies are selected and further analysis is performed for optimizing their structure dimensions such as width, height and length. A section of the total micro heat-sink is modeled for the initial optimization of the pin-fin shape. The model consists of two sections, the substrate and the fluid. Six different shapes: square, circle, rectangle, triangle, oval and rhombus were analyzed in the initial optimization study. Preliminary tests were conducted using the first model described above for a flow rate of 0.6ml/min. The non dimensional overall thermal resistance of the heat sink, and the nondimensional pumping power was calculated from the results. A figure of merit (FOM) was developed using the nondimensional thermal resistance and nondimensional pumping power for each structure with different pin-fin shapes. Smaller the value of FOM better the performance of the heat sink. The study revealed that the circle and ellipse structures have the best performance and the rectangle structure had the worst performance at low flow rates. At high flow rates rectangular and square structures have the best performance.


Sign in / Sign up

Export Citation Format

Share Document