Analysis and Design of Thermoelectric Infrared Microsensor

Author(s):  
Ke-Min Liao ◽  
Rongshun Chen ◽  
Bruce C. S. Chou

In this study, a novel thermoelectric infrared microsensor (TIMS) is designed by using commercial CMOS IC processes with subsequent bulk-micromachining process. This microsensor has the advantages of high fill factor, low noise equivalent temperature difference (NETD), and simple fabrication process. The key feature is that thermocouple cantilever beams with low solid thermal conductance have been placed under the membrane of thermoelectric infrared microsensor. In order to improve the performance of the infrared sensor, the basic physical characteristics of this sensor have been analyzed. Finite element analysis is used to simulate the electro-thermo-mechanical behavior of the device and to demonstrate the feasibility of our design. Besides, a method for manufacturing the infrared microsensor is also provided and the performance of the presented design has been examined. The analytical results concluded that lowering down the number of the thermocouples does not affect the responsivity but do reduce the total resistance. Also, the detectivity and responsivity are obviously increased for the proposed TIMS. Finally, the deviation between the theoretical and the simulated results is discussed.

Author(s):  
Ke-Min Liao ◽  
Da-Hong Chiou ◽  
Keng-Shun Lin ◽  
Rongshun Chen

This paper describes a thermoelectric infrared (IR) microsensor which is designed and fabricated using commercial CMOS IC processes with subsequent bulk-micromachining technology. The key feature of this sensor is that the thermocouples have been placed under the IR absorbing membrane. This infrared microsensor has the advantages of high fill factor, low noise equivalent temperature difference (NETD), and broad bandwidth. Finite element analysis has been conducted to simulate the heat transfer behavior of the device and to demonstrate the feasibility of our design. Besides, the experimental setup has been built for measuring the infrared sensor response. The results show a measured responsivity of 63 V/W and a thermal time constant of 10 ms.


2011 ◽  
Vol 1299 ◽  
Author(s):  
I-Kuan Lin ◽  
Ping Du ◽  
Yanhang Zhang ◽  
Xin Zhang

ABSTRACTInfrared radiation (IR) detection and imaging are of great importance to a variety of military and civilian applications. Microcantilever-based IR detectors have recently gained a lot of interest because of their potential to achieve extremely low noise equivalent temperature difference (NETD) while maintaining low cost to make them affordable to more applications. However, the curvature induced by residual strain mismatch within the microcantilever severely decreases the device performance. To meet performance and reliability requirement, it is important to fully understand the deformation of IR detectors. Therefore, the purpose of this study is threefold: (1) to develop an engineering approach to flatten IR detectors, (2) to model and predict the elastic deformation of IR detectors using finite element analysis (FEA), and (3) to study the inelastic deformation during isothermal holding.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamzah Sabah Jebur

Abstract The present paper is focused on analysis of reinforced and plain concrete haunched beam under torsion based on non-linear finite element analysis NLFEA approach. Ten cantilever beams (five of them are steel reinforced and the rest are not reinforced) were modelled by using ANSYS software with different haunched angles to achieve the purpose of the present study. The verification was done for two prismatic beams under torsion, and two reinforced concrete haunched beams (RCHBs) under static shear load to ensure the correctness of modelling. The verification work illustrated a good agreement between the NLFEA results by using ANSYS and previous experimental work results. No specific details in torsional design for RCHB in many codes, and no/very less works have done regarding analysis or design of RCHB under torsion. The main purpose of the present work is checking the capability of using ACI-318 code in analysis and design of concrete haunched beam for torsion. The presented paper confirms the validation of using ACI-318-2019 in analysis and design of RCHB and plain concrete haunched beam PCHB as well, where the FEA results by using ANSYS were at accuracy not less than 92 % with the ACI-318-2019 results for all specimens. The torsional mechanism failure and shear stresses distribution of RCHB are discussed in the present paper.


2020 ◽  
Vol 14 ◽  
Author(s):  
Osama Bedair

Background: Modular steel buildings (MSB) are extensively used in petrochemical plants and refineries. Limited guidelines are available in the industry for analysis and design of (MSB) subject to accidental vapor cloud explosions (VCEs). Objectives: The paper presents simplified engineering model for modular steel buildings (MSB) subject to accidental vapor cloud explosions (VCEs) that are extensively used in petrochemical plants and refineries. Method: A Single degree of freedom (SDOF) dynamic model is utilized to simulate the dynamic response of primary building components. Analytical expressions are then provided to compute the dynamic load factors (DLF) for critical building elements. Recommended foundation systems are also proposed to install the modular building with minimum cost. Results: Numerical results are presented to illustrate the dynamic response of (MSB) subject to blast loading. It is shown that (DLF)=1.6 is attained at (td/t)=0.4 for front wall (W1) with (td/T)=1.25. For side walls (DLF)=1.41 and is attained at (td/t)=0.6. Conclusions: The paper presented simplified tools for analysis and design of (MSB) subject accidental vapor cloud blast explosions (VCEs). The analytical expressions can be utilized by practitioners to compute the (MSB) response and identify the design parameters. They are simple to use compared to Finite Element Analysis.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3416
Author(s):  
Gheorghe Dumitrașcu ◽  
Michel Feidt ◽  
Ştefan Grigorean

This paper develops simplifying entropic models of irreversible closed cycles. The entropic models involve the irreversible connections between external and internal main operational parameters with finite physical dimensions. The external parameters are the mean temperatures of external heat reservoirs, the heat transfers thermal conductance, and the heat transfer mean log temperatures differences. The internal involved parameters are the reference entropy of the cycle and the internal irreversibility number. The cycle’s design might use four possible operational constraints in order to find out the reference entropy. The internal irreversibility number allows the evaluation of the reversible heat output function of the reversible heat input. Thus the cycle entropy balance equation to design the trigeneration cycles only through external operational parameters might be involved. In designing trigeneration systems, they must know the requirements of all consumers of the useful energies delivered by the trigeneration system. The conclusions emphasize the complexity in designing and/or optimizing the irreversible trigeneration systems.


2009 ◽  
Vol 37 (2) ◽  
pp. 257-281 ◽  
Author(s):  
Jouni Kaukovuori ◽  
Mikko Kaltiokallio ◽  
Jussi Ryynänen

2021 ◽  
pp. 1-18
Author(s):  
Brandon Sargent ◽  
Collin Ynchausti ◽  
Todd G Nelson ◽  
Larry L Howell

Abstract This paper presents a method for predicting endpoint coordinates, stress, and force to deflect stepped cantilever beams under large deflections. This method, the Mixed-Body Model or MBM, combines small deflection theory and the Pseudo-Rigid-Body Model for large deflections. To analyze the efficacy of the model, the MBM is compared to a model that assumes the first step in the beam to be rigid, to finite element analysis, and to the numerical boundary value solution over a large sample set of loading conditions, geometries, and material properties. The model was also compared to physical prototypes. In all cases, the MBM agrees well with expected values. Optimization of the MBM parameters yielded increased agreement, leading to average errors of <0.01 to 3%. The model provides a simple, quick solution with minimal error that can be particularly helpful in design.


Sign in / Sign up

Export Citation Format

Share Document