Design and Fabrication of a CMOS-MEMS Thermoelectric Infrared Microsensor

Author(s):  
Ke-Min Liao ◽  
Da-Hong Chiou ◽  
Keng-Shun Lin ◽  
Rongshun Chen

This paper describes a thermoelectric infrared (IR) microsensor which is designed and fabricated using commercial CMOS IC processes with subsequent bulk-micromachining technology. The key feature of this sensor is that the thermocouples have been placed under the IR absorbing membrane. This infrared microsensor has the advantages of high fill factor, low noise equivalent temperature difference (NETD), and broad bandwidth. Finite element analysis has been conducted to simulate the heat transfer behavior of the device and to demonstrate the feasibility of our design. Besides, the experimental setup has been built for measuring the infrared sensor response. The results show a measured responsivity of 63 V/W and a thermal time constant of 10 ms.

Author(s):  
Ke-Min Liao ◽  
Rongshun Chen ◽  
Bruce C. S. Chou

In this study, a novel thermoelectric infrared microsensor (TIMS) is designed by using commercial CMOS IC processes with subsequent bulk-micromachining process. This microsensor has the advantages of high fill factor, low noise equivalent temperature difference (NETD), and simple fabrication process. The key feature is that thermocouple cantilever beams with low solid thermal conductance have been placed under the membrane of thermoelectric infrared microsensor. In order to improve the performance of the infrared sensor, the basic physical characteristics of this sensor have been analyzed. Finite element analysis is used to simulate the electro-thermo-mechanical behavior of the device and to demonstrate the feasibility of our design. Besides, a method for manufacturing the infrared microsensor is also provided and the performance of the presented design has been examined. The analytical results concluded that lowering down the number of the thermocouples does not affect the responsivity but do reduce the total resistance. Also, the detectivity and responsivity are obviously increased for the proposed TIMS. Finally, the deviation between the theoretical and the simulated results is discussed.


2011 ◽  
Vol 1299 ◽  
Author(s):  
I-Kuan Lin ◽  
Ping Du ◽  
Yanhang Zhang ◽  
Xin Zhang

ABSTRACTInfrared radiation (IR) detection and imaging are of great importance to a variety of military and civilian applications. Microcantilever-based IR detectors have recently gained a lot of interest because of their potential to achieve extremely low noise equivalent temperature difference (NETD) while maintaining low cost to make them affordable to more applications. However, the curvature induced by residual strain mismatch within the microcantilever severely decreases the device performance. To meet performance and reliability requirement, it is important to fully understand the deformation of IR detectors. Therefore, the purpose of this study is threefold: (1) to develop an engineering approach to flatten IR detectors, (2) to model and predict the elastic deformation of IR detectors using finite element analysis (FEA), and (3) to study the inelastic deformation during isothermal holding.


2011 ◽  
Vol 383-390 ◽  
pp. 2097-2102
Author(s):  
Yi Shu Hao ◽  
Bao Gang Zhang ◽  
Bei Peng

The application of plastic gear is becoming more and more widespread due to its advantages of low noise, shock and vibration absorption and self-lubrication. Friction heat of plastic gear is an important reason for their failure, because the thermal conductivity of plastic is smaller than the metal and the heat generated by friction is an important factor for temperature rising of plastic gear. This paper established a tribology and temperature model of plastic gear transmission by the way of theoretical analysis and finite element simulation of plastic and steel helical gear transmission. The result of finite element analysis shows that friction heat of plastic gears generated during meshing is comparatively large, but the friction of plastic gear and steel gear during the process of meshing is small. The analysis conclusion, contrapose the tribological properties between plastic and steel helical gear, enriched and improved the research in this field and provided some ready-made experiences.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yong Fu ◽  
Jun Hu ◽  
Jia Liu ◽  
Shengbin Hu ◽  
Yunhui Yuan ◽  
...  

The technology of artificial horizontal freezing method is increasingly being used in the soil reinforcement of urban underground projects such as shield-driven tunnelling. Compared with the freezing process, the thawing process is more complicated, and the thawing behavior of artificial frozen soil surrounding shield-driven tunnels has not been well investigated in both the academic and industrial domains. This study, therefore, aims to investigate the natural thawing heat transfer behavior of artificial horizontal frozen soil in shield-driven tunnelling using a three-dimensional finite element method. The finite element modelling is based on the horizontal freezing reinforcement project of Chating Station to Jiqingmen Station Tunnel in the Nanjing Metro Line 2. Validation between finite element results and site measured results is firstly conducted. The natural thawing temperature field contours as well as the radial and longitudinal distributions of natural thawing temperature in the frozen soil surrounding the tunnel are then explicitly examined. Furthermore, sensitivity analysis of influencing factors such as the thermal conductivity, latent heat of phase change, ambient temperature inside tunnel, freezing time, and original ground temperature is carried out. The results and findings of this study may enrich the current limited database and enable a better understanding of natural thawing heat transfer behavior of artificial frozen soil in shield-driven tunnelling.


Author(s):  
Jessica R. Bronson ◽  
Gloria J. Wiens ◽  
James J. Allen

Micro mirrors have emerged as key components for optical microelectromechanical system (MEMS) applications. Electrostatic vertical comb drives are attractive because they can be fabricated underneath the mirror, allowing for arrays with a high fill factor. Also, vertical comb drives are more easily controlled than parallel plate actuators, making them the better choice for analog scanning devices. The device presented in this paper is a one-degree of freedom vertical comb drive fabricated using Sandia National Laboratories SUMMiT™ five-level surface micromachining process. The electrostatic performance of the device is investigated using finite element analysis to determine the capacitance for a unit cell of the comb drive as the position of the device is varied. This information is then used to design a progressive linkage that will seek to alleviate or eliminate the effects of instability. The goal of this research is to develop an electrostatic model for the behavior of the vertical comb drive mirror and then use this to design a progressive-linkage that can delay or eliminate the pull-in instability.


2017 ◽  
Vol 63 (Special Issue) ◽  
pp. S13-S17
Author(s):  
Lev Jakub ◽  
Shapoval Vadym ◽  
Bartoška Jan ◽  
Kumhála František

The protection of wild animals from mutilation or being killed during haymaking is still a serious problem connected with high working speeds and widths of modern harvesting machines. That is why the main aim of this study was to test low-cost, high-speed and low-noise infrared array sensor Melexis MLX90621 for the application of wildlife detection with the potential to be used in front of the mower equipment. The tests with two different crops with or without a hidden dog were made. Results showed that the sensor is able to detect an animal hidden in the crop with very high probability. Nevertheless, direct sunlight conditions can cause the problems when using infrared technology. A simultaneous use of other sensors working on different principle than infrared technology can be thus recommended.


Author(s):  
J. C. Chiou ◽  
C. C. Hung ◽  
L. J. Shieh ◽  
Z. L. Tsai

Sign in / Sign up

Export Citation Format

Share Document