A Hybrid CFD-Mathematical Model for Simulation of a MEMS Loop Heat Pipe

Author(s):  
M. Ghajar ◽  
J. Darabi ◽  
N. Crews

A Hybrid CFD-Mathematical (HyCoM) model was developed to predict the performance of a Micro Loop Heat Pipe (MLHP) as a function of input heat rate. A micro loop heat pipe is a passive two-phase heat transport device, consisting of microevaporator, microcondenser, micro-compensation chamber (CC), and liquid and vapor lines. A CFD model was incorporated into a loop solver code to identify heat leak to the CC. Two-phase pressure drop in the condenser was calculated by several two phase correlations and results were compared [2]. Capillary tube correlations [3] were used for pressure drop calculations in fluid lines. Effects of working fluid and change in geometry were studied. For a heat transport distance of 10 mm, the base model MLHP was 50mm long, 16mm wide and 1mm thick. In the base model, widths of the grooves, liquid and vapor lines, evaporator, and condenser were 55μm, 200μm, 750μm, 2mm, and 4mm respectively.

Author(s):  
B. P. d’Entremont ◽  
J. M. Ochterbeck

In this investigation, a Loop Heat Pipe (LHP) evaporator has been studied using a borescope inserted through the compensation chamber into the liquid core. This minimally intrusive technique allows liquid/vapor interactions to be observed throughout the liquid core and compensation chamber. A low conductivity ceramic was used for the wick and ammonia as the working fluid. Results indicate that buoyancy driven flows, both two-phase and single-phase, play essential roles in evacuating excess heat from the core, which explains the several differences in performance between horizontal and vertical orientations of the evaporator. This study also found no discernable effect of the pre-start fill level of the compensation chamber on thermal performance during startup at moderate and high heat loads.


Author(s):  
Praveen Kumar Arragattu ◽  
Frank M. Gerner ◽  
Priyanka Ponugoti ◽  
H. T. Henderson

The Micro Loop Heat Pipe (LHP) is a two phase device that may be used to cool electronics, solar collectors and other devices in space applications. A LHP is a two-phase device with extremely high effective thermal conductivity that utilizes the thermodynamic pressure difference developed between the evaporator and condenser and capillary forces developed inside its wicked evaporator to circulate a working fluid through a closed loop. While previous experiments have shown reduction in chip temperature, maximum heat flux was less than theoretically predicted. This paper addresses the main problem with the past designs of top cap which has been the conduction of heat from the heat source to the primary wick. The new top cap design provides conduction pathways which enables the uniform distribution of heat to the wick. The provision of conduction pathways in the top cap increases the pressure losses and decreases the temperature drop. The feasible competitive designs of the top cap with conduction pathways from the fabrication point of view were discussed in detail. Calculation of pressure drop and temperature drop is essential for the determination of optimal solutions of the top cap. Approximate pressure drop was calculated for the top cap designs using simple 2-D microchannel principles. Finite element modeling was performed to determine the temperature drop in the conduction pathways. The conditions used for arriving at the optimal design solutions are discussed. A trapezoidal slot top cap design was chosen for fabrication as it was relatively easy to fabricate with available MEMS fabrication technologies. The exact pressure drop calculation was performed on the fabricated top cap using commercial flow solver FLUENT 6.1 with appropriate boundary conditions. The temperature drop calculation was performed by finite element modeling in ANSYS 6.1. Obtained values of pressure drop and temperature drop for fabricated trapezoidal slot top cap was found to be within the optimal limits.


Author(s):  
Navdeep S. Dhillon ◽  
Jim C. Cheng ◽  
Albert P. Pisano

Theoretical and numerical thermodynamic analysis of the evaporator section of a planar microscale loop heat pipe is presented, to minimize the permissible wick thickness in such a device. In conventional cylindrical loop heat pipes, a minimum wick thickness is required in order to reduce parasitic heat flow, and prevent vapor leakage, into the compensation chamber. By taking advantage of the possibilities allowed by microfabrication techniques, a planar evaporator/compensation chamber design topology is proposed to overcome this limitation, which will enable wafer-based loop heat pipes with device thicknesses on the order of a millimeter or less. Thermodynamic principles governing two-phase flow of the working fluid in a loop heat pipe are analyzed to elucidate the fundamental requirements that would characterize the startup and steady state operation of a planar phase-change device. A three dimensional finite element thermal-fluid solver is implemented to study the thermal characteristics of the evaporator section and compensation chamber regions of a planar vertically wicking micro-columnated loop heat pipe. The use of in-plane thermal conduction barriers to reduce parasitic heat flow into the compensation chamber is demonstrated.


2005 ◽  
Author(s):  
Junwoo Suh ◽  
Ahmed Shuja ◽  
Praveen Medis ◽  
Srinivas Parimi ◽  
Frank M. Gerner ◽  
...  

As the trend of high throughput in small packages continues, the heat dissipation becomes a very critical design issue in electronic devices and spacecrafts. The two phase loop heat pipe utilizes the latent heat of working fluid. It consists of an evaporator, compensation chamber, condenser, and liquid and vapor line. The primary wick used as a core part to circulate the working fluid is located in the evaporator. The planar loop heat pipe uses coherent porous silicon (CPS) wick as opposed to the conventional cylindrical configuration, which uses a sintered amorphous metal wick. The clear evaporator machined from Pyrex glass and transparent silicone tubes were utilized to monitor the complex phenomena which occur in the evaporator. Tests were conducted under the non-vacuum condition without a secondary wick. DI-water was used as a working fluid. Like an open loop test previously conducted, there was an operating range in which the liquid could be properly pumped from the compensation chamber to the vapor line under the pumping motion. In this device, more than 6 Watts could be convected from the evaporator to the ambient. Therefore circulation was not observed until powers greater than 6 Watts. There was a circulation of working fluid occurring due to energy transport within the loop when the input power was from 7.94 Watts to 17.6 Watts. The quantity of heat transportation to the loop was calculated by acquiring the empirical heat transfer coefficient. From this calculation it was found that, roughly, 12.1 Watts was transported to the loop and 5.51 Watts was convected to the ambient from the evaporator itself when the applied power was 15.27 Watts.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


Author(s):  
Shuangfeng Wang ◽  
Shigefumi Nishio

Heat transport rates of micro scale SEMOS (Self-Exciting Mode Oscillating) heat pipe with inner diameter of 1.5mm, 1.2mm and 0.9mm, were investigated by using R141b, ethanol and water as working fluids. The effects of inner diameter, liquid volume faction, and material properties of the working fluids are examined. It shows that the smaller the inner diameter, the higher the thermal transport density is. For removing high heat flux, the water is the most promising working fluid as it has the largest critical heat transfer rate and the widest operating range among the three kinds of working fluids. A one-dimensional numerical simulation is carried out to describe the heat transport characteristics and the two-phase flow behavior in the closed loop SEMOS heat pipe. The numerical prediction agrees with the experimental results fairly well, when the input heat through was not very high and the flow pattern was slug flow.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Prem Kumar ◽  
Sameer Khandekar ◽  
Yuri F. Maydanik ◽  
Bishakh Bhattacharya

Abstract A loop heat pipe (LHP) is an efficient passive, two-phase heat transfer device which can transport heat up to large distances (over ∼ 5 m) even in the anti-gravity mode. It is necessary to miniaturize the LHPs to make them suitable for space-constrained avionics applications. However, before incorporating these devices under high-vibrational environmental conditions such as those encountered in avionics applications, it is imperative to study their thermal performance under such loads. With the aim of understanding the effect of acceleration and frequency of imposed vibration on thermal performance of miniature LHP (mLHP), a contextual experimental study has been reported here using an ammonia charged mLHP (8 mm evaporator diameter; titanium wick) in the horizontal orientation for two cases: (a) without vibration and (b) with the transverse and longitudinal harmonic vibrations (1–4g, frequencies 15–45 Hz, and sine sweep 15–45 Hz in 1 s). With start-up loads between 5 W and 8 W, the LHP can transfer heat load of about 120 W at safe evaporation temperature of 70 °C. Results show that for the transverse vibration, acceleration rate and frequency of imposed vibrations do not affect the thermal performance of mLHP. For the longitudinal vibration, the device performance gets noticeably enhanced with increased acceleration. The decisive role of heat leak (from evaporator to the compensation chamber (CC)) with imposed vibrations is clearly observed, and its link to the internal fluid distribution can be discerned from data trends.


Author(s):  
Nima Atabaki ◽  
B. Rabi Baliga

A network thermofluid model of a loop heat pipe (LHP) operating under steady-state conditions is presented. Attention is focused on a simple LHP, with one evaporator, a vapor transport line, a single condenser, a liquid transport line, and a compensation chamber. The evaporator is an internally grooved circular pipe, with a cylindrical wick installed on its inner surface. The wick is made of a sintered metal. The condenser is a horizontal tube covered with a high-thermal-conductivity sleeve, and the outer temperature of the sleeve is maintained at a constant sink temperature. Quasi one-dimensional mathematical models of the fluid flow and heat transfer in each of the elements of the LHP, and collectively of the entire LHP, are proposed and discussed. The working fluid considered in this work is ammonia, but the proposed model can work with any suitable fluid. Results pertaining to the LHP performance for a range of operating conditions are presented, compared (qualitatively) to corresponding results of an earlier experimental investigation in the literature, and discussed.


Author(s):  
Tomonao Takamatsu ◽  
Katsumi Hisano ◽  
Hideo Iwasaki

In this paper is presented the results on performance of the cooling model using Loop Heat Pipe (LHP) system. In recent years, ever-ending demand of high performance CPU led to a rapid increase in the amount of heat dissipation. Consequently, thermal designing of electronic devices need to consider some suitable approach to achieve high cooling performance in limited space. Heat Pipe concept is expected to serve as an effective cooling system for laptop PC, however, it suffered from some problems as follows. The heat transport capability of conventional Heat Pipe decreases with the reduction in its diameter or increase in its length. Therefore, in order to use it as cooling system for future electronic devices, the above-mentioned limitations need to be removed. Because of the operating principle, the LHP system is capable of transferring larger amount of heat than conventional heat pipes. However, most of the LHP systems suffered from some problems like the necessity of installing check valves and reservoirs to avoid occurrence of counter flow. Therefore, we developed a simple LHP system to install it on electronic devices. Under the present experimental condition (the working fluid was water), by keeping the inside diameter of liquid and vapor line equal to 2mm, and the distance between evaporator and condenser equal to 200mm, it was possible to transport more than 85W of thermal energy. The thickness of evaporator was about 5mm although it included a structure to serve the purpose of controlling vapor flow direction inside it. Successful operation of this system at inclined position and its restart capability are confirmed experimentally. In order to make the internal water location visible, the present LHP system is reconstructed using transparent material. In addition, to estimate the limit of heat transport capability of the present LHP system using this thin evaporator, the air cooling system is replaced by liquid cooling one for condensing device. Then this transparent LHP system could transport more than 100W of thermal energy. However, the growth of bubbles in the reserve area with the increase in heat load observed experimentally led to an understanding that in order to achieve stable operation of the LHP system under high heat load condition, it is very much essential to keep enough water in the reserve area and avoid blocking the inlet with bubbles formation.


Author(s):  
Nicholas A. Roche ◽  
Martin Cleary ◽  
Teresa B. Peters ◽  
Evelyn N. Wang ◽  
John G. Brisson

We report the design and analysis of a novel compensation chamber for use in PHUMP, a multiple condenser loop heat pipe (LHP) capable of dissipating 1000 W. The LHP is designed for integration into a high performance air-cooled heat sink to address thermal management challenges in advanced electronic systems. The compensation chamber is integrated into the evaporator of the device and provides a region for volumetric expansion of the working fluid over a range of operating temperatures. Additionally, the compensation chamber serves to set the liquid side pressure of the device, preventing both flooding of the condensers and dry out of the evaporator. The compensation chamber design was achieved through a combination of computational simulation using COMSOL Multiphysics and models developed based on experimental work of previous designs. The compensation chamber was fabricated as part of the evaporator using Copper and Monel sintered wicks with various particle sizes to achieve the desired operating characteristics. Currently, the compensation chamber is being incorporated into a multiple condenser LHP for a high performance air-cooled heat sink.


Author(s):  
Eric Golliher ◽  
Jentung Ku ◽  
Anthony Licari ◽  
James Sanzi

NASA plans human exploration near the South Pole of the Moon, and other locations where the environment is extremely cold. This paper reports on the heat transfer performance of a loop heat pipe exposed to extreme cold under the simulated reduced gravitational environment of the Moon. A common method of spacecraft thermal control is to use a loop heat pipe with ammonia working fluid. Typically, a small amount of heat is provided either by electrical heaters or by environmental design, such that the loop heat pipe condenser temperature never drops below the freezing point of ammonia. The concern is that a liquid-filled, frozen condenser would not re-start, or that a thawing condenser would damage the tubing due to the expansion of ammonia upon thawing. This paper reports the results of an experimental investigation of a novel approach to avoid these problems. The loop heat pipe compensation chamber is conditioned such that all the ammonia liquid is removed from the condenser and the loop heat pipe is non-operating. The condenser temperature is then reduced to below that of the ammonia freezing point. The loop heat pipe is then successfully re-started.


Sign in / Sign up

Export Citation Format

Share Document