Models for Reliability of Fine-Pitch BGAs and CSPs in Shock and Drop Impact

Author(s):  
Pradeep Lall ◽  
Dhananjay Panchagade ◽  
Yueli Liu ◽  
Wayne Johnson ◽  
Jeff Suhling

Drop-induced failures are most dominant in portable electronic products. In this study, explicit finite element models have been used to study the transient dynamics of printed circuit boards during drop from 6 ft. Methodologies for modeling components using smeared property formulations have been investigated. Reduced integration element formulations examined include – shell and solid elements. Model predictions have been validated with experimental data. Results show that models with smeared properties can predict transient-dynamic response of board assemblies in drop-impact, fairly accurately. High-speed data acquisition system has been used to capture in-situ strain, continuity and acceleration data in excess of 1 million samples per second. Ultra high-speed video at 40,000 fps per second has been used to capture the deformation kinematics. Component types examined include – plastic ball-grid arrays, tape-array BGA, QFN, and C2BGA. Model predictions have been correlated with experimental data. Impact of experimental error sources on model correlation with experiments also has been investigated.

2007 ◽  
Vol 129 (4) ◽  
pp. 373-381 ◽  
Author(s):  
Pradeep Lall ◽  
Dhananjay Panchagade ◽  
Yueli Liu ◽  
Wayne Johnson ◽  
Jeff Suhling

Portable electronics is subjected to extreme accelerations in shock and drop impact. Product development cycle times and the cost constraints often restrict the number of design variations tested for drop robustness prior to identification of the final configuration. Simulation models capable of predicting transient dynamics can provide valuable insight into the design reliability under shock environments. In this study, explicit finite-element models have been used to study the transient dynamics of printed circuit boards during drop from 6ft. Methodologies for modeling components using smeared-property formulations have been investigated. Reduced integration element formulations examined include shell and solid elements. Model predictions have been validated with experimental data. Results show that models with smeared properties can predict transient-dynamic response of board assemblies in drop impact fairly accurately. High-speed data acquisition system has been used to capture in situ strain, continuity, and acceleration data in excess of 1×106samples∕s. Ultra-high-speed video at 40,000fps has been used to capture the deformation kinematics. Component types examined include plastic ball-grid arrays, tape-array ball-grid array, quad-flat-no-lead package, and conduction-cooled ball-grid array. Model predictions have been correlated with experimental data. Impact of experimental error sources on model correlation with experiments has been also investigated


2007 ◽  
Vol 129 (4) ◽  
pp. 382-390 ◽  
Author(s):  
Pradeep Lall ◽  
Nokibul Islam ◽  
John Evans ◽  
Jeff Suhling

Increased use of sensors and controls in automotive applications has resulted in significant emphasis on the deployment of electronics directly mounted on the engine and transmission. Increased shock, vibration, and higher temperatures necessitate the fundamental understanding of damage mechanisms, which will be active in these environments. Electronics typical of office benign environments uses FR-4 printed circuit boards (PCBs). Automotive applications typically use high glass-transition temperature laminates such as FR4-06 glass∕epoxy laminate material (Tg=164.9°C). In application environments, metal backing of printed circuit boards is being targeted for thermal dissipation, mechanical stability, and interconnections reliability. In this study, the effect of metal-backed boards on the interconnect reliability has been evaluated. Previous studies on electronic reliability for automotive environments have addressed the damage mechanics of solder joints in plastic ball-grid arrays on non-metal-backed substrates (Lall et al., 2003, “Model for BGA and CSP in Automotive Underhood Environments,” Electronic Components and Technology Conference, New Orleans, LA, May 27–30, pp. 189–196;Syed, A. R., 1996, “Thermal Fatigue Reliability Enhancement of Plastic Ball Grid Array (PBGA) Packages,” Proceedings of the 1996 Electronic Components and Technology Conference, Orlando, FL, May 28–31, pp. 1211–1216;Evans et al., 1997, “PBGA Reliability for Under-the-Hood Automotive Applications,” Proceedings of InterPACK ’97, Kohala, HI, Jun. 15–19, pp. 215–219;Mawer et al., 1999, “Board-Level Characterization of 1.0 and 1.27mm Pitch PBGA for Automotive Under-Hood Applications,” Proceedings of the 1999 Electronic Components and Technology Conference, San Diego, CA, Jun. 1–4, pp. 118–124) and ceramic ball-grid arrays (BGAs) on non-metal-backed substrates (Darveaux, R., and Banerji, K., 1992, “Constitutive Relations for Tin-Based Solder Joints,” IEEE Trans-CPMT-A, Vol. 15, No. 6, pp. 1013–1024;Darveaux et al., 1995, “Reliability of Plastic Ball Grid Array Assembly,” Ball Grid Array Technology, Lau, J., ed., McGraw-Hill, New York, pp. 379–442;Darveaux, R., 2000, “Effect of Simulation Methodology on Solder Joint Crack Growth Correlation,” Proceedings of 50th ECTC, May, pp. 1048–1058). Delamination of PCBs from metal backing has also been investigated. The test vehicle is a metal-backed FR4-06 laminate. The printed circuit board has an aluminum metal backing, attached with pressure sensitive adhesive (PSA). Component architectures tested include plastic ball-grid array devices, C2BGA devices, QFN, and discrete resistors. Reliability of the component architectures has been evaluated for HASL. Crack propagation and intermetallic thickness data have been acquired as a function of cycle count. Reliability data have been acquired on all these architectures. Material constitutive behavior of PSA has been measured using uniaxial test samples. The measured constitutive behavior has been incorporated into nonlinear finite element simulations. Predictive models have been developed for the dominant failure mechanisms for all the component architectures tested.


Author(s):  
Joseph Varghese ◽  
Bo Song ◽  
Michael H. Azarian ◽  
Abhijit Dasgupta ◽  
Michael Pecht

This paper reports on the effect of printed wiring assembly (PWA) flexural strain and strain rate and aging on the durability and failure site of Sn-Pb solders in area array packages. Two different plastic ball grid array (PBGA) package styles, one with a single die and the other with stacked die, are used for this study. We consider the effect of intermetallic growth on the failure site transition in the interconnects. Results are compared to similar studies in literature. This study quantifies durability in terms of the local PWA response (PWA flexural strain, PWA flexural strain rate, cyclic history) instead of the conventional approaches that typically use loading parameters (total impact energy, orientation and number of drops. This makes the results more generic and easier to extrapolate to different assemblies and different loading/orientation conditions. Four point bend tests are conducted on the PWAs assembled with PBGA components. A high speed data acquisition system with in-situ resistance monitoring is used to track the PWA response and the number of cycles to failure. The strain rate is varied over three orders of magnitude while the peak strain is studied over the range of 25 to 75% of the overstress limit. The durability of the specimens decreases with increasing PWA flexural strain and varies non-monotonically with flexural strain rate. As-reflowed samples (with a thin intermetallic layer), undergo a transition in the failure site from bulk solder to FR-4 board and copper trace with increasing PWA flexure. Aged samples (with a thick intermetallic layer), have lower durability and fail in the intermetallic layer for all values of PWA strain. This study identifies the PWA flexural strain and strain rate limits for failure site transition in aged and as-reflowed samples of a PBGA package.


Author(s):  
Gary R. Consolazio ◽  
David R. Cowan ◽  
Alexander Biggs ◽  
Ronald A. Cook ◽  
Marcus Ansley ◽  
...  

Bridges that span navigable waterways must be designed to resist potential impact loads associated with barge or ship collisions. Despite this fact, few experimental data have been collected about the magnitude and nature of such loads. Vessel-impact components of bridge design specifications, such as the AASHTO bridge design provisions, are therefore based on limited experimental data. Recently, a bridge in the United States (Florida) was replaced with a new structure and thus afforded a unique opportunity to conduct full-scale barge impact tests on piers of the preexisting structure before it was demolished. Tests were conducted on two piers with fundamentally different types of foundation systems. Tests on one pier also were repeated in two structural configurations (with the superstructure present and then with it removed). In each test, instrumentation and high-speed data acquisition systems were used to quantify the dynamic loads generated during controlled collision events. Experimental procedures used during the tests are described, and selected test results are presented, including experimentally measured dynamic impact loads and associated barge deformations. Comparisons are then presented between experimentally collected data and the current AASHTO barge impact bridge design provisions.


2004 ◽  
Vol 127 (3) ◽  
pp. 340-352 ◽  
Author(s):  
Srinivasa Aravamudhan ◽  
Daryl Santos ◽  
Gerald Pham-Van-Diep ◽  
Frank Andres

Stencil printing is a critical first step in surface mount assembly. However, its robustness can be called into question because of the fact that about 50% or more of the defects found in the assembly of printed circuit boards (PCBs) are attributed to stencil printing 1. Manufacturing techniques for the assembly of certain flip chips, chip scale packages, 0201s, and fine pitch ball grid arrays are testing the limits of current stencil printing capabilities. This paper focuses on understanding the release of solder paste from the stencil, based on experimental and modeling approaches. The primary goal of the study is to characterize the performance of various aperture sizes and geometries based on release efficiencies and to compare them to predictions. The resulting model validation helps us better understand the print process for small features and offers options for increasing print yields. The study is divided into two phases. The first phase examines the release performance of various solder pastes from a variety of aperture sizes and geometries. The focus of this study is a comparison of square versus circular apertures when the nominal volume of paste to be deposited is kept constant. The second phase consists of developing a model that predicts paste-release efficiencies from small apertures and validating the model with experimental results.


Author(s):  
Steven M. Whitaker ◽  
Jeffrey P. Bons

A methodology for informing physics-based impact and deposition models through the use of novel experimental and analysis techniques is presented. Coefficient of Restitution (CoR) data were obtained for Arizona Road Dust (ARD), AFRL02 dust, and each component of AFRL02 impacting a Hastelloy X plate at a variety of flow temperatures (295–866 K), surface temperatures (295–1255 K), particle velocities (0–100 m/s), and impact angles (0–90 degrees). High speed Particle Shadow Velocimetry (PSV) allowed individual impact data to be obtained for more than 8 million particles overall, corresponding to 20 combinations of particle composition, flow temperature, and surface temperature. The experimental data were applied to an existing physics-based particle impact model to assess its ability to accurately capture the physics of particle impact dynamics. Using the experimental data and model predictions, two improvements to the model were proposed. The first defined a velocity-dependent effective yield strength, designed to account for the effects of strain hardening and strain rate during impact. The second introduces statistical spread to the model output, accounting for the effect of randomizing variables such as particle shape and rotation. Both improvements were demonstrated to improve the model predictions significantly. Applying the improved model to the experimental data sets, along with known temperature-dependent material properties such as the elastic modulus and particle density, allowed the temperature dependence of the effective yield strength to be determined. It was found that the effective yield strength is not a function of temperature over the range studied, suggesting that changes in other properties are responsible for differences in rebound behavior. The improved model was incorporated into a computational simulation of an impinging flow to assess the effect of the model improvements on deposition predictions, with the improved model obtaining deposition trends that more closely match what has been observed in previous experiments. The work performed serves as a stepping stone towards further improvement of physics-based impact and deposition models through refinement of other modeled physical processes.


Author(s):  
Brian Rebbechi ◽  
B. David Forrester ◽  
Fred B. Oswald ◽  
Dennis P. Townsend

Abstract A comparison was made between computer model predictions of gear dynamic behaviour and experimental results. The experimental data were derived from the NASA gear noise rig, which was used to record dynamic tooth loads and vibration. The experimental results were compared with predictions from the Australian Defence Science and Technology Organisation Aeronautical Research Laboratory’s gear dynamics code, for a matrix of 28 load-speed points. At high torque the peak dynamic load predictions agree with experimental results with an average error of 5 percent in the speed range 800 to 6000 rpm. Tooth separation (or bounce), which was observed in the experimental data for light-torque, high-speed conditions, was simulated by the computer model. The model was also successful in simulating the degree of load sharing between gear teeth in the multiple-tooth-contact region.


Author(s):  
P. Singh ◽  
G.T. Galyon ◽  
J. Obrzut ◽  
W.A. Alpaugh

Abstract A time delayed dielectric breakdown in printed circuit boards, operating at temperatures below the epoxy resin insulation thermo-electrical limits, is reported. The safe temperature-voltage operating regime was estimated and related to the glass-rubber transition (To) of printed circuit board dielectric. The TG was measured using DSC and compared with that determined from electrical conductivity of the laminate in the glassy and rubbery state. A failure model was developed and fitted to the experimental data matching a localized thermal degradation of the dielectric and time dependency. The model is based on localized heating of an insulation resistance defect that under certain voltage bias can exceed the TG, thus, initiating thermal degradation of the resin. The model agrees well with the experimental data and indicates that the failure rate and truncation time beyond which the probability of failure becomes insignificant, decreases with increasing glass-rubber transition temperature.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 295
Author(s):  
Pao-Hsiung Wang ◽  
Yu-Wei Huang ◽  
Kuo-Ning Chiang

The development of fan-out packaging technology for fine-pitch and high-pin-count applications is a hot topic in semiconductor research. To reduce the package footprint and improve system performance, many applications have adopted packaging-on-packaging (PoP) architecture. Given its inherent characteristics, glass is a good material for high-speed transmission applications. Therefore, this study proposes a fan-out wafer-level packaging (FO-WLP) with glass substrate-type PoP. The reliability life of the proposed FO-WLP was evaluated under thermal cycling conditions through finite element simulations and empirical calculations. Considering the simulation processing time and consistency with the experimentally obtained mean time to failure (MTTF) of the packaging, both two- and three-dimensional finite element models were developed with appropriate mechanical theories, and were verified to have similar MTTFs. Next, the FO-WLP structure was optimized by simulating various design parameters. The coefficient of thermal expansion of the glass substrate exerted the strongest effect on the reliability life under thermal cycling loading. In addition, the upper and lower pad thicknesses and the buffer layer thickness significantly affected the reliability life of both the FO-WLP and the FO-WLP-type PoP.


Sign in / Sign up

Export Citation Format

Share Document