Multi-Spectral Image Fusion Using Intensity Modulation and Non-Separable Wavelet Frame

Author(s):  
Xuhong Yang ◽  
Zhongliang Jing ◽  
Jian-Xun Li

A fusion approach is proposed to refine the resolution of multi-spectral images using the corresponding high-resolution panchromatic images. The technique is based on intensity modulation and non-separable wavelet frame. The high-resolution panchromatic image is decomposed by the non-separable wavelet frame. Then the wavelet coefficients are used as the factor of modulating to modulate the multi-spectral image. Experimental results indicate that, comparing with the traditional methods, the proposed method can efficiently preserve the spectral information while improving the spatial resolution of remote sensing images.

2015 ◽  
Vol 738-739 ◽  
pp. 217-222
Author(s):  
Yan Jia ◽  
Zhen Tao Qin ◽  
Bang Xin Yang

De-blurring the high resolution remote sensing images is an important issue in the relative research field of remote sensing. In this paper a novel algorithm of de-blurring the high resolution remote sensing images is proposed based on sparse representation. The high spatial resolution remote sensing images can be de-blurred by gradient projection algorithm, and keep the useful information of the image. The experimental results of the remote sensing images obtained by “the first satellite of high resolution” show that the algorithm can de-blur the image more effectively and improve the PSNR, this method has better performance than other dictionary learning algorithm.


2020 ◽  
Vol 12 (21) ◽  
pp. 3501
Author(s):  
Qingsong Xu ◽  
Xin Yuan ◽  
Chaojun Ouyang ◽  
Yue Zeng

Unlike conventional natural (RGB) images, the inherent large scale and complex structures of remote sensing images pose major challenges such as spatial object distribution diversity and spectral information extraction when existing models are directly applied for image classification. In this study, we develop an attention-based pyramid network for segmentation and classification of remote sensing datasets. Attention mechanisms are used to develop the following modules: (i) a novel and robust attention-based multi-scale fusion method effectively fuses useful spatial or spectral information at different and same scales; (ii) a region pyramid attention mechanism using region-based attention addresses the target geometric size diversity in large-scale remote sensing images; and (iii) cross-scale attention in our adaptive atrous spatial pyramid pooling network adapts to varied contents in a feature-embedded space. Different forms of feature fusion pyramid frameworks are established by combining these attention-based modules. First, a novel segmentation framework, called the heavy-weight spatial feature fusion pyramid network (FFPNet), is proposed to address the spatial problem of high-resolution remote sensing images. Second, an end-to-end spatial-spectral FFPNet is presented for classifying hyperspectral images. Experiments conducted on ISPRS Vaihingen and ISPRS Potsdam high-resolution datasets demonstrate the competitive segmentation accuracy achieved by the proposed heavy-weight spatial FFPNet. Furthermore, experiments on the Indian Pines and the University of Pavia hyperspectral datasets indicate that the proposed spatial-spectral FFPNet outperforms the current state-of-the-art methods in hyperspectral image classification.


2012 ◽  
Vol 170-173 ◽  
pp. 2803-2807
Author(s):  
Yan Hua Sun ◽  
Ping Wang

High resolution remote sensing images generally refer to image to the spatial resolution within 10m aerospace、aviation remote sensing images. The emergence of high-resolution images strengthened the ability to recognize the large scale features, especially for the extraction of houses information in mining area. High spatial resolution image has rich delicate texture feature, it is urgent to solution the problem of how to extract the features. The technology is very useful for statistic houses information、village relocation assessment and research of pressure coal status, providing important data basis for village relocation, statistics, assessment. Taking henan as a mining area for example, houses information extraction methods are discussed. This paper mainly research contents as followings: It is combined with the space texture information of high resolution imaging rich, using different methods to extract building information, including followings: First, ordinary image segmentation technology; this method is simple and feasible, but extracted housing information is not accurate. Second, the object-oriented method of feature extraction technology, visualization degree and extracting accuracy of this method is higher; Third, it has conducted the preliminary height extraction of the houses; according to the solar altitude angles and the shadow of the houses to calculate the height of the houses. And considering the influence of undulating terrain, using the terrain DEM data to analyze study area, finally determined the shadow length, and then used solar altitude angles to calculate houses height. Based on the verification, accuracy evaluation results show that houses contour information extraction accuracy is: accuracy of the number and area is over 80%, the total rate of wrong classifications is lower. Houses highly information extraction accuracy is within the 85%. The research methods are effective.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hui Zhou ◽  
Hongmin Gao

This paper presents a kind of image fusion method based on fuzzy integral, integrated spectral information, and 2 single factor indexes of spatial resolution in order to greatly retain spectral information and spatial resolution information in fusion of multispectral and high-resolution remote sensing images. Firstly, wavelet decomposition is carried out to two images, respectively, to obtain wavelet decomposition coefficients of the two image and keep coefficient of low frequency of multispectral image, and then optimized fusion is carried out to high frequency part of the two images based on weighting coefficient to generate new fusion image. Finally, evaluation is carried out to the image after fusion with introduction of evaluation indexes of correlation coefficient, mean value of image, standard deviation, distortion degree, information entropy, and so forth. The test results show that this method integrated multispectral information and space high-resolution information in a better way, and it is an effective fusion method of remote sensing image.


2020 ◽  
Vol 12 (24) ◽  
pp. 4158
Author(s):  
Mengmeng Li ◽  
Alfred Stein

Spatial information regarding the arrangement of land cover objects plays an important role in distinguishing the land use types at land parcel or local neighborhood levels. This study investigates the use of graph convolutional networks (GCNs) in order to characterize spatial arrangement features for land use classification from high resolution remote sensing images, with particular interest in comparing land use classifications between different graph-based methods and between different remote sensing images. We examine three kinds of graph-based methods, i.e., feature engineering, graph kernels, and GCNs. Based upon the extracted arrangement features and features regarding the spatial composition of land cover objects, we formulated ten land use classifications. We tested those on two different remote sensing images, which were acquired from GaoFen-2 (with a spatial resolution of 0.8 m) and ZiYuan-3 (of 2.5 m) satellites in 2020 on Fuzhou City, China. Our results showed that land use classifications that are based on the arrangement features derived from GCNs achieved the highest classification accuracy than using graph kernels and handcrafted graph features for both images. We also found that the contribution to separating land use types by arrangement features varies between GaoFen-2 and ZiYuan-3 images, due to the difference in the spatial resolution. This study offers a set of approaches for effectively mapping land use types from (very) high resolution satellite images.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7397
Author(s):  
Yanjun Wang ◽  
Shaochun Li ◽  
Yunhao Lin ◽  
Mengjie Wang

Rapid and accurate extraction of water bodies from high-spatial-resolution remote sensing images is of great value for water resource management, water quality monitoring and natural disaster emergency response. For traditional water body extraction methods, it is difficult to select image texture and features, the shadows of buildings and other ground objects are in the same spectrum as water bodies, the existing deep convolutional neural network is difficult to train, the consumption of computing resources is large, and the methods cannot meet real-time requirements. In this paper, a water body extraction method based on lightweight MobileNetV2 is proposed and applied to multisensor high-resolution remote sensing images, such as GF-2, WorldView-2 and UAV orthoimages. This method was validated in two typical complex geographical scenes: water bodies for farmland irrigation, which have a broken shape and long and narrow area and are surrounded by many buildings in towns and villages; and water bodies in mountainous areas, which have undulating topography, vegetation coverage and mountain shadows all over. The results were compared with those of the support vector machine, random forest and U-Net models and also verified by generalization tests and the influence of spatial resolution changes. First, the results show that the F1-score and Kappa coefficients of the MobileNetV2 model extracting water bodies from three different high-resolution images were 0.75 and 0.72 for GF-2, 0.86 and 0.85 for Worldview-2 and 0.98 and 0.98 for UAV, respectively, which are higher than those of traditional machine learning models and U-Net. Second, the training time, number of parameters and calculation amount of the MobileNetV2 model were much lower than those of the U-Net model, which greatly improves the water body extraction efficiency. Third, in other more complex surface areas, the MobileNetV2 model still maintained relatively high accuracy of water body extraction. Finally, we tested the effects of multisensor models and found that training with lower and higher spatial resolution images combined can be beneficial, but that using just lower resolution imagery is ineffective. This study provides a reference for the efficient automation of water body classification and extraction under complex geographical environment conditions and can be extended to water resource investigation, management and planning.


2019 ◽  
Vol 12 (1) ◽  
pp. 81 ◽  
Author(s):  
Xinghua Li ◽  
Zhiwei Li ◽  
Ruitao Feng ◽  
Shuang Luo ◽  
Chi Zhang ◽  
...  

Urban geographical maps are important to urban planning, urban construction, land-use studies, disaster control and relief, touring and sightseeing, and so on. Satellite remote sensing images are the most important data source for urban geographical maps. However, for optical satellite remote sensing images with high spatial resolution, certain inevitable factors, including cloud, haze, and cloud shadow, severely degrade the image quality. Moreover, the geometrical and radiometric differences amongst multiple high-spatial-resolution images are difficult to eliminate. In this study, we propose a robust and efficient procedure for generating high-resolution and high-quality seamless satellite imagery for large-scale urban regions. This procedure consists of image registration, cloud detection, thin/thick cloud removal, pansharpening, and mosaicking processes. Methodologically, a spatially adaptive method considering the variation of atmospheric scattering, and a stepwise replacement method based on local moment matching are proposed for removing thin and thick clouds, respectively. The effectiveness is demonstrated by a successful case of generating a 0.91-m-resolution image of the main city zone in Nanning, Guangxi Zhuang Autonomous Region, China, using images obtained from the Chinese Beijing-2 and Gaofen-2 high-resolution satellites.


Sign in / Sign up

Export Citation Format

Share Document