Teaching Human Termal Comfort Through a Software Graphic Interface

Author(s):  
P. Arezes ◽  
C. P. Lea˜o ◽  
M. L. Ferreira ◽  
S. F. Teixeira

Human comfort has become a key issue in developing new technologies and products. Thermal comfort perception is mainly affected by heat and mass transfer processes between the human body and its environment. In teaching this subject to Mechanical Engineering undergraduate students at University of Minho, the thermal comfort index PMV (Predicted Mean Vote) has often been used. It gives a statistical mean value of comfort sensation and it is very simple to use. On the other hand, a full computer simulation software of the human bodyclothing-environment system is a more effective way to study thermal comfort. However, computer models can be quite complicated to follow and to use in classes. A thermal human comfort model has been incorporated into a graphical interface in order to facilitate its current use. The graphical interface appears to be a very useful tool to interact with the thermal human comfort model developed. During its development stage, the interface has been tested using questionnaires in order to optimize its usability as a learning tool. Three different groups have been targeted by the questionnaires: first group of students from the Industrial Engineering degree, who have already some general knowledge about ergonomics, the second group included Post-Graduate students in Human Engineering, and the third group included students from Mechanical Engineering degree. Comparing results and also motivating students to this interesting and demanding subject has been the main objective of the present work.

2021 ◽  
Vol 11 (12) ◽  
pp. 768
Author(s):  
Dorys C. González ◽  
Jesús Mínguez ◽  
Miguel A. Vicente

This paper shows a teaching experience related to the use of computed tomography in the teaching of concrete for undergraduate students of the civil engineering degree. This experience reveals that computed tomography is a powerful tool to facilitate the understanding of all those aspects related to the microstructure of concrete, thus facilitating comprehension of the correlation between the microstructure and its macroscopic response. In addition, students showed a greater motivation and interest in the subject, which promotes better academic learning. A pilot test was carried out to evaluate the viability of these practices and to analyze the teaching impact of this activity. The results show that students were very interested in the use of new technologies in teaching and, more particularly, in the use of computed tomography. The students satisfactorily received the project. A greater motivation of the students in the subject was also observed, which resulted in better grades when compared with those of previous courses. The results reveal that the average grade of the students rose by around 8%, and a higher percentage of students achieved higher scores when compared to the previous five years.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 575
Author(s):  
Jelena Ochs ◽  
Ferdinand Biermann ◽  
Tobias Piotrowski ◽  
Frederik Erkens ◽  
Bastian Nießing ◽  
...  

Laboratory automation is a key driver in biotechnology and an enabler for powerful new technologies and applications. In particular, in the field of personalized therapies, automation in research and production is a prerequisite for achieving cost efficiency and broad availability of tailored treatments. For this reason, we present the StemCellDiscovery, a fully automated robotic laboratory for the cultivation of human mesenchymal stem cells (hMSCs) in small scale and in parallel. While the system can handle different kinds of adherent cells, here, we focus on the cultivation of adipose-derived hMSCs. The StemCellDiscovery provides an in-line visual quality control for automated confluence estimation, which is realized by combining high-speed microscopy with deep learning-based image processing. We demonstrate the feasibility of the algorithm to detect hMSCs in culture at different densities and calculate confluences based on the resulting image. Furthermore, we show that the StemCellDiscovery is capable of expanding adipose-derived hMSCs in a fully automated manner using the confluence estimation algorithm. In order to estimate the system capacity under high-throughput conditions, we modeled the production environment in a simulation software. The simulations of the production process indicate that the robotic laboratory is capable of handling more than 95 cell culture plates per day.


Author(s):  
TMGP Duarte ◽  
AM Lopes ◽  
LFM da Silva

Understanding how the academic performance of first year undergraduate students is influenced by home, personal and institutional factors is fundamental to delineate policies able to mitigate failure. This paper investigates possible correlations between the academic performance of students at the end of high school with their achievements at the end of first year university. Data for students in the Integrated Master in Mechanical Engineering (MIEM) program within the Faculty of Engineering at the University of Porto are analysed for the period 2016/2017 to 2019/2020. The students’ performance is measured by two metrics and the students are structured as a whole and by groups, according to their gender (Male/Female), type of secondary school (Public/Private), living place (Away/Home) and the rank of MIEM in their application list of options (Option 1/Option 2–6). The information is organized statistically and possible correlations between the data are investigated. The analysis reveals limited correlation between the two metrics, meaning that all students may exhibit good or poor results at the end of first year in MIEM, independent of their status at entrance. An unanticipated pattern is exhibited for the group Option 2–6, since it shows that, despite entering into MIEM without top application marks, the students in this group can perform as well as the others. This behavior is consistent over time.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 389-395 ◽  
Author(s):  
Ralph E.H. Sims

AbstractSome forms of renewable energy have long contributed to electricity generation, whereas others are just emerging. For example, large-scale hydropower is a mature technology generating about 16% of global electricity, and many smaller scale systems are also being installed worldwide. Future opportunities to improve the technology are limited but include upgrading of existing plants to gain greater performance efficiencies and reduced maintenance. Geothermal energy, widely used for power generation and direct heat applications, is also mature, but new technologies could improve plant designs, extend their lifetimes, and improve reliability. By contrast, ocean energy is an emerging renewable energy technology. Design, development, and testing of a myriad of devices remain mainly in the research and development stage, with many opportunities for materials science to improve design and performance, reduce costly maintenance procedures, and extend plant operating lifetimes under the harsh marine environment.


2021 ◽  
Vol 14 (5) ◽  
pp. 228
Author(s):  
Bruce E. Ciccotosto ◽  
Uriah J. Tobey ◽  
Sara O. Santos ◽  
Benjamin Ahn

2021 ◽  
Vol 16 (3) ◽  
pp. 155-177
Author(s):  
Shouib Mabdeh ◽  
Tamer Al Radaideh ◽  
Montaser Hiyari

ABSTRACT Thermal comfort has a great impact on occupants’ productivity and general well-being. Since people spend 80–90% of their time indoors, developing the tools and methods that enhance the thermal comfort for building are worth investigating. Previous studies have proved that using passive systems like Trombe walls and solar chimneys significantly enhanced thermal comfort in inside spaces despite that each system has a specific purpose within a specific climate condition. Hence, the main purpose of this study is to design and configure a new, dual functional passive system, called a solar wall. The new system combines the Trombe wall and solar chimney, and it can cool or heat based on building needs. Simulation software, DesignBuilder, has been used to configure the Solar Wall, and study its impact on indoor operative temperature for the base case. Using the new system, the simulation results were compared with those obtained in the base case and analyzed to determine the most efficient system design parameters and implementation method. The case that gave the best results for solar wall configuration was triple glazed glass and 0.1 cm copper as an absorber (case 11). The results show that using four units (case D) achieves longer thermal comfort levels: 15 to 24 thermal hours during winter (compared to five hours maximum) and 10 to 19 comfort hours in summer (compared to zero).


2021 ◽  
Vol 16 (1) ◽  
pp. 139-161
Author(s):  
Shouib Mabdeh ◽  
Tamer Al Radaideh ◽  
Montaser Hiyari

ABSTRACT Thermal comfort has a great effect on occupants’ productivity and general well-being. Since people spend 80–90% of their time indoors, developing the tools and methods that help in enhancing the thermal comfort for buildings are worth investigating. Previous studies have proved that using passive systems like Trombe walls and solar chimneys significantly enhanced thermal comfort in inside spaces despite that each system has a specific purpose within a specific climate condition. Hence, the main purpose of this study is to design and configure a new dual functional passive system, called a solar wall. The new system combines the Trombe wall and solar chimney, and it can cool or heat based on building needs. Simulation software, DesignBuilder, has been used to configure the Solar Wall and study its impact on indoor operative temperature for the base case. Using the new system, the simulation results were compared with those obtained in the base case and analyzed to determine the most efficient system design parameters and implementation method. The case that gave the best results for solar wall configuration was triple glazed glass and 0.1 cm copper as an absorber (case 11). The results show that using four units (case D) achieves longer thermal comfort levels: 15 to 24 thermal hours during winter (compared to five hours maximum) and 10 to 19 comfort hours in summer (compared to zero).


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Caibing Liu ◽  
Fang Li ◽  
Guohao Chen ◽  
Xin Huang

With the integration of new technologies such as smart technologies and cloud computing in the industrial Internet of Things, the complexity of industrial IoT applications is increasing. Real-time performance and determinism are becoming serious challenges for system implementation in these Internet of Things systems, especially in critical security areas. This paper provides a framework for a software-defined bus-based intelligent robot system and designs scheduling algorithms to make TTEthernet play the role of scheduling in the framework. Through the framework, the non-real-time and uncertainties problem of distributed robotic systems can be solved. Moreover, a fragment strategy was proposed to solve the problem of large delay caused by Rate-Constrained traffic. Experimental results indicate that the improved scheme based on fragmentation strategy proposed in this paper can improve the real-time performance of RC traffic to a certain extent. Besides, this paper made a performance test and comparison experiments of the improved scheme in the simulation software to verify the feasibility of the improved scheme. The result showed that the delay of Rate-Constrained traffic was reduced and the utilization rate of network was improved.


2007 ◽  
Vol 10 (05) ◽  
pp. 453-457 ◽  
Author(s):  
Rajesh Kumar ◽  
S. Ramanan ◽  
J.L. Narasimham

Summary Oil productivity from Mumbai High field, an offshore multilayered carbonate reservoir, increased significantly through the implementation of a major redevelopment program. Geoscientific information available from approximately 700 exploratory and develop- ment wells drilled in the field during nearly 25 years was incorporated during geological and reservoir simulation modeling of the field. High-technology drilling (viz. horizontal/multilaterals for the new development wells) was adopted on field scale to effectively address typical complexity of the layered carbonate reservoirs. Since the commencement of the project in 2000, approximately 140 new wells were drilled, mostly with horizontal and multilateral drainholes. Besides these, more than 70 suboptimal producers were also converted as horizontal sidetracks under brownfield development. The horizontal sidetracks were drilled as long-drift sidetrack (LDST), extended-reach drilling (ERD), LDST-ERD, short-drift sidetrack (SDST), and medium-radius drainhole (MRDH) types of wells through the application of innovative and emerging drilling technologies with nondamaging drilling fluids, whipstocks to kick off sidetrack wells, rotary-steering systems, and expandable tubulars to complete horizontal sidetracks in lower layers. With the implementation of this project, the declining trend was fully arrested and a significant upward trend in production has been established. Introduction The field redevelopment process requires the intergration of reservoir-development strategies, facility options, and drilling and production philosophies to maximize oil and gas recovery from a matured field. A significant number of case studies are available on mature field revitalization using a multidisciplinary team concept, exhaustive geo-scientific data analysis, and new drilling technologies (Chedid and Colmenares 2002; Clark et al. 2000; Dollens et al. 1999; Kinchen et al. 2001). Advancements in drilling and completion technology have enabled construction of horizontal wells with longer wellbores, more-complex well geometry, and sophisticated completion designs. Horizontal wells provide an effective method to produce bypassed oil from matured fields. In the early 1980s, this technology was in the development stage and was used in limited applications. By the 1990s, the technology had matured, and its acceptance in the industry had increased significantly. Performance of horizontal/multilateral wells, risk assessment of horizontal-well productivity and comparison of horizontal- and vertical-well performance in different fields is available in literature (Babu and Aziz 1989; Brekke and Thompson 1996; Economides et al. 1989; Joshi 1987; Joshi and Ding 1995; Mukherjee and Economides 1991; Norris et al. 1991; Vij et al. 1998). A significant number of horizontal/multilateral development wells were drilled as a part of redevelopment of Mumbai High, a matured multilayered carbonate offshore field in Western India. The details of new technologies applied and performance of these new high-technology wells are presented in this paper. Besides comparison of well productivity of horizontal and conventional sidetrack wells, this paper presents some technical issues faced.


Author(s):  
ARTURO FLORES CONDORI

<h4 class="text-primary">Resumen</h4><p style="text-align: justify;">El presente artículo consistió en la construcción de una vivienda solar pasivo a base de propiedades termofísicas (Conductividad térmica, calor específico, difusividad térmica y inercia térmica) y desarrollar una evaluación experimental del rendimiento térmico aportado por los elementos constructivos, en una comunidad rural Colloco - Ilave, provisto de adecuado aislamiento térmico en la envolvente (doble pared de adobe, en el cielo raso: paja­carrizo-yeso y en el piso: tierra apisonada-cama de piedra-plástico-paja y totora), ubicación, la orientación y un sistema de acumulación de energía adecuadamente diseñada a base a encapsulado de piedras andesitas porosas y de totora. La distribución de energía calorífica almacenada fue primordial al ambiente dormitorio que esto permite el aprovechamiento de la energía solar para lograr que la temperatura al interior de la vivienda sea más confortable. Se realizó el análisis del comportamiento térmico de la vivienda construida y la vivienda rural típica, para lo cual se tomaron los datos meteorológicos de la zona (temperatura, humedad relativa, velocidad del viento y radiación solar), también se registraron la temperatura y humedad relativa del aire en el ambiente interior y exterior de las viviendas desde 19 de junio al 02 de julio del 2013. Obteniéndose en la vivienda construida las temperaturas máximas y mínimas de 15.85ºC y 11.88ºC respectivamente. Según la evaluación de la vivienda construida se aprecia un incremento de temperatura mínimo de 6.26°C, respecto a la vivienda típica. Para validar estos resultados experimentales, se ha utilizado el programa de simulación térmica EnergyPlus para los datos meteorológicos de la zona (3 868 msnm), comprobándose por el método correlativo, el factor de correlación fue r=0.92575. Este incremento de la temperatura en el interior de la vivienda construida contribuye alcanzar un confort térmico, permitiendo una condición de vida saludable para el poblador rural.</p><p><strong>PALABRAS CLAVE: </strong>* confort térmico * energía solar * propiedades termofísica * simulación térmica</p><h4 class="text-primary">ABSTRACT</h4><p><strong>CONSTRUCTION OF A SOLAR DWELLING BASED ON THERMOPHYSICAL PROPERTIES AND EXPERIMENTAL EVALUATION OF THERMAL COMFORT - ILAVE, PUNO - PERU»</strong></p><p style="text-align: justify;">The present article consists in the construction of a passive solar house based on the study of thermophysical properties (thermal conductivity, specific heat, thermal diffusivity and thermal inertia). We developed an experimental evaluation of the thermal efficiency contributed by different constructive materials, In the rural community of Colloco - Ilave. Once adequate thermal insulation was provided in the enveloping surface (double wall construction of sun-dried adobe brick, a false ceiling with: straw, bamboo and plaster. In the floor: tamped soil, stone bed, plastic, straw and totora reed). Location and position of the solar home in coordination with an energy accumulation system adequately designed with an encapsulation of porous Andesitic stones and Totora reed. Distribution of the stored thermal energy was directed primarily to the main bedroom, this enabled adequate use of solar energy in order to achieve a comfortable temperature within the dwelling. We analyzed the thermal behavior of both this experimental structure and that of a common rural dwelling; taking the interior and exterior meteorological readings found in the two dwelling types. (temperature, relative humidity, wind velocity and solar radiation). Between June 19th and July 2nd, the temperature and relative humidity of the interior of the experimental structure measured a max. of 15.85ºC (60.53ºF) and 11.88ºC (53.384ºF) respectively. According to a general evaluation of the experimental structure, there was a temperature increment of 6.26°C (=¿?ºF) compared to the average temperature of a normal dwelling. In order to confirm these experimental results we used the thermic simulation software EnergyPlus, entering the meteorological data of the area (3,868 meters above sea level=12690.3 ft.) using the correlative method and a correlative factor of r=0.92575. This higher temperature inside of the experimental structure contributes to attaining a thermic comfort allowing for a healthy living condition for the rural inhabitant.</p><p><strong>KEY WORDS: </strong>* thermal comfort * solar energy * thermophysical properties * thermal simulation</p>


Sign in / Sign up

Export Citation Format

Share Document