Dynamical Stress Distribution Analysis of a Non-Uniform Cross-Section Beam Under Moving Mass

Author(s):  
M. T. Ahmadian ◽  
E. Esmailzadeh ◽  
M. Asgari

One of the engineers concern in designing bridges and structures under moving load is the uniformity of stress distribution. In this paper the analysis of a variable cross-section beam subjected to a moving concentrated force and mass is investigated. Finite element method with cubic Hermitian interpolation functions is used to model the structure based on Euler-Bernoulli beam and Wilson-Θ direct integration method is implemented to solve time dependent equations. Effects of cross-section area variation, boundary conditions, and moving mass inertia on the deflection, natural frequencies and longitudinal stresses of beam are investigated. Results indicates using a beam of parabolically varying thickness with constant mass can decrease maximum deflection and stresses along the beam while increasing natural frequencies of the beam. The effect of moving mass inertia of moving load is found to be significant at high velocity.

2019 ◽  
Vol 14 (2) ◽  
pp. 138-141
Author(s):  
I.M. Utyashev

Variable cross-section rods are used in many parts and mechanisms. For example, conical rods are widely used in percussion mechanisms. The strength of such parts directly depends on the natural frequencies of longitudinal vibrations. The paper presents a method that allows numerically finding the natural frequencies of longitudinal vibrations of an elastic rod with a variable cross section. This method is based on representing the cross-sectional area as an exponential function of a polynomial of degree n. Based on this idea, it was possible to formulate the Sturm-Liouville problem with boundary conditions of the third kind. The linearly independent functions of the general solution have the form of a power series in the variables x and λ, as a result of which the order of the characteristic equation depends on the choice of the number of terms in the series. The presented approach differs from the works of other authors both in the formulation and in the solution method. In the work, a rod with a rigidly fixed left end is considered, fixing on the right end can be either free, or elastic or rigid. The first three natural frequencies for various cross-sectional profiles are given. From the analysis of the numerical results it follows that in a rigidly fixed rod with thinning in the middle part, the first natural frequency is noticeably higher than that of a conical rod. It is shown that with an increase in the rigidity of fixation at the right end, the natural frequencies increase for all cross section profiles. The results of the study can be used to solve inverse problems of restoring the cross-sectional profile from a finite set of natural frequencies.


2012 ◽  
Vol 18 (6) ◽  
pp. 773-782 ◽  
Author(s):  
Małgorzata Meissner ◽  
Piotr Ruta

The forced vibrations of a curved-in-plane nonprismatic beam with a variable cross section and any curvature, generated by a load moving at a variable velocity are analyzed. Approximation with Chebyshev series and a generalized eigentransformation were used to solve the system of the partial differential equations describing the considered problem. The derived equations in their final form enable one to determine displacement and rotation functions for any beam. In order to verify the derived formulas the eigenproblem solution (used in the eigentransformation method) was compared with the one obtained by the finite element method.


2016 ◽  
Vol 693 ◽  
pp. 504-510
Author(s):  
Xiao Juan Jiao ◽  
Jian Min Ma

s The longitudinal impact between rigid body and variable cross-section elastic rod with fixed boundary condition was studied, the velocity and stress distribution law during 1st impact wave period was derived for the variable cross-section rod, the influence of cross-section change rate on rod response was discussed. Some examples calculations were carried on, It is shown that the cross-section change rate is a significant influencing factor for the velocity and stress distribution in the rod during impact.


2013 ◽  
Vol 20 (4) ◽  
pp. 359-370 ◽  
Author(s):  
Ersin Demir ◽  
Hasan Çallioğlu ◽  
Metin Sayer

AbstractIn this study, free vibration behavior of a multilayered symmetric sandwich beam made of functionally graded materials (FGMs) with variable cross section resting on variable Winkler elastic foundation are investigated. The elasticity and density of the functionally graded (FG) sandwich beam vary through the thickness according to the power law. This law is related to mixture rules and laminate theory. In order to provide this, a 50-layered beam is considered. Each layer is isotropic and homogeneous, although the volume fractions of the constituents of each layer are different. Furthermore, the width of the beam varies exponentially along the length of the beam, and also the beam is resting on an elastic foundation whose coefficient is variable along the length of the beam. The natural frequencies are computed for conventional boundary conditions of the FG sandwich beam using a theoretical procedure. The effects of material, geometric, elastic foundation indexes and slenderness ratio on natural frequencies and mode shapes of the beam are also computed and discussed. Finally, the results obtained are compared with a finite-element-based commercial program, ANSYS®, and found to be consistent with each other.


2020 ◽  
Vol 65 (1) ◽  
pp. 56-62
Author(s):  
Mohamed Gaith

The dynamics and stability of flow induced vibration of flow conveying in pipes particularly in case of high velocity flow may lead to severe damage. Predicting the circular natural frequencies and critical fluid velocities is an important tool in design and prevent system failures. In this study transverse dynamic response of simply supported pipe with variable tubular cross sectional area carrying fluid with a constant flow rate is investigated. Euler Bernoulli's beam theory is used to model the pipe. Hamilton's principle will be used to produce the governing equation of motion for the system. The resulting partial differential equation is solved using Galerkin's technique. The impact of the flow velocity and non-uniform variable cross section on the natural frequencies of the system, critical flow velocity and system stability is presented.


1961 ◽  
Vol 83 (4) ◽  
pp. 373-376 ◽  
Author(s):  
R. Chicurel ◽  
E. Suppiger

This paper presents a procedure, based on the integral equation method, for the calculation of the natural frequencies of lateral vibration of beams with variable cross section. The approximate solution is obtained by collocation [1, 2]. A preliminary step in the analysis is the determination of static deflection curves; this is carried out in a convenient tabular form. An example of a stepped beam is given and the results are compared to those obtained by Myklestad’s method [3].


Sign in / Sign up

Export Citation Format

Share Document