Angular Position Control of Fluid-Driven Spindle

Author(s):  
Yohichi Nakao ◽  
Naoya Asaoka

A precise spindle is essential to achieve precision machining, such as diamond turning. A fluid driven spindle supported by hydrostatic bearings was thus designed and tested. A feature of the spindle is that several flow channels are designed in its rotor so that driving torque can be generated by supplying pressurized flow into the channels. Rotational speed of the spindle can be controlled by the flow rate. In addition, the rotational direction of the spindle can be controlled by switching supply ports. Thus angular position control of the spindle is achieved by designing appropriate feedback controller. In the present paper, mathematical model of the spindle was thus derived in order for designing an angular position control system. Then spindle characteristics calculated by the mathematical model were compared with experimental results. Furthermore, the angular position control system that has a disturbance observer in its feedback loop was designed based on the mathematical model. The performance of the designed control system was experimentally investigated through the step response. Experimental results verified that the designed controller minimizes the steady state error of angular position of the spindle. Consequently, the steady state error was comparable with the resolution of the rotary encoder, 0.018 degree. In particular, the experimental results indicated that the disturbance observer effectively reduced the influence of various load torque on the angular position of the spindle.

Author(s):  
Y Nakao ◽  
M Ishikawa

This paper describes the design of a rotational speed-control system and an angular position-control system for a fluid-driven bi-directional motor. The fluid-driven bi-directional motor has a driving principle similar to that of the fluid-driven spindle, which is designed for use in ultra-precision machine tools. The fluid-driven bi-directional motor was designed so that it is driven by low viscosity oil flow power. In this paper, the rotational speed controller for the motor is first discussed. In order to reduce the influence of external load torque on the rotational speed, a conventional disturbance observer is combined with the rotational speed-control system. The angular position-control system, which possesses the rotational speed feedback loop with the disturbance observer in the angular position feedback loop, is then discussed. The designed rotational speed and angular position-control systems are conventional I—P control and proportional control systems, respectively. The performance of the designed rotational speed-control system and the angular position-control system is studied via simulations and experiments. The performance of the designed control system is tested by the step response method as well as by the frequency response method, respectively. The simulation and experimental results show that the rotational speed and the angular position of the motor can be controlled by the rotational speed controller and angular position controller, respectively. In addition, the influence of the external load torque acting on the motor is successfully compensated for by means of the disturbance observer. The experimental result shows that the designed angular position-control system suppresses the steady-state positioning error to less than 0.02°, even if external constant load torque acts on the motor.


2014 ◽  
Vol 657 ◽  
pp. 699-703
Author(s):  
Petru Gabriel Puiu ◽  
Daniel Drilea ◽  
Dragoş Iulian Nedelcu ◽  
Dragoș Andrioaia

This paper work presents some aspects of modeling the behavior an object in an upward airflow with possible applications in pneumatic elevators. In the premises known from the literature, was formulated the physical model of corp behavior at air flow varying. In the first stage of the work, was completed in Solid Works the physical model and the functioning simulation in Flow Simulations. The imput data was provided in solving the mathematical model in Matcad 13. To achieve the control system was chose an open sources software solution with SCADA interface made in Pro wiew.


Author(s):  
Y Nakao ◽  
M Ishikawa

A water-driven spindle was developed for use in ultra-precision machine tools. Features of this spindle are: (a) it utilizes water flow power to spin the spindle rotor and (b) it utilizes the water pressure to support the rotor. Bend flow channels are formed in the cross-sections of the spindle rotor so that the power of the water flow can be converted into driving power for spinning the rotor. This paper proposes a spindle structure similar to that of the water-driven spindle. A feature of the proposed spindle is that it can be driven in either rotational direction by switching the supply ports. By virtue of the feature of the proposed spindle, angular position control will become achievable by designing an appropriate control system. Prior to developing the angular position-controllable spindle, a testing device, named the fluid-driven bi-directional motor, was developed. This paper deals with the modelling of the motor that will be needed for designing the angular position control system. The derived mathematical model is then evaluated by comparison with the experimental results. It is then verified that the derived mathematical model is capable of representing the static as well as dynamic characteristics of the motor.


2011 ◽  
Vol 186 ◽  
pp. 21-25
Author(s):  
Jin Yu ◽  
Yuan Li ◽  
Xiao Kang Xu

Nowadays, the hydraulic straightening presses play an important role in straightening mandrels. For different mandrels, straightening forces and reductions differ. So the proportional position control system under pressure boundary conditions is required. The mathematical model of the system is deduced, and simulation of the system is carried out by MATLAB. The curves of step response and Bode diagram show that the system is steady and quick-response. The error caused by load is analyzed, which meets the straightening requirements and validates its design. The work in this paper can provide a high guidance for presses of similar kinds.


Author(s):  
Bingwei Gao ◽  
Hao Guan ◽  
Wenming Tang ◽  
Wenlong Han ◽  
Shilong Xue

: In order to obtain the precise mathematical model of the position control system of the hydraulic quadruped robot, and to meet the requirements of the system parameters in different stages of motion, this paper studies the position control system of the single-leg joint of the hydraulic quadruped robot: First of all, this paper uses the closed-loop indirect identification method to identify the position of the leg joints of the hydraulic quadruped robot to obtain the mathematical model of the system; And then, the speed PID control algorithm and speed planning algorithm are designed, so that the system can quickly respond to the changes of system input according to the requirements of different speeds; Finally, the joint position control system of the hydraulic quadruped robot is simulated and verified by experiments. Background: The mathematical model of the positioning system of the hydraulic quadruped robot is clear, but the parameters in the model have the characteristics of uncertainty and time-variation. In the joint position control system of a hydraulic quadruped robot, different motion stages have different requirements for system parameters. Objective: The purpose of this study is to obtain the precise mathematical model of the position control system of the hydraulic quadruped robot and to meet the requirements of the system parameters in different stages of motion. Method: This research takes the hydraulic quadruped robot single-leg system as the research object and uses the closed-loop indirect identification method to identify the position of the leg joints of the hydraulic quadruped robot to obtain the mathematical model of the system. Then, the speed PID control method is designed and compared with the ordinary PID control by taking the positioning control accuracy of the robot before touching the ground as a standard to carry out the controlled trial. Results: In this research, the identification method and control algorithm are designed, and finally, the simulation and experimental research are carried out. The results of the simulation and experiment verify the correctness of the identification method and the effectiveness of the control algorithm. Conclusion: First of all, this paper uses the closed-loop indirect identification method to identify the position of the leg joints of the hydraulic quadruped robot to obtain the mathematical model of the system. Then, the speed PID control algorithm and speed planning algorithm are designed so that the system can quickly respond to the changes of system input according to the requirements of different speeds.


Author(s):  
Julián Andres Gómez Gómez ◽  
Camilo E. Moncada Guayazán ◽  
Sebastián Roa Prada ◽  
Hernando Gonzalez Acevedo

Abstract Gimbals are mechatronic systems well known for their use in the stabilization of cameras which are under the effect of sudden movements. Gimbals help keeping cameras at previously defined fixed orientations, so that the captured images have the highest quality. This paper focuses on the design of a Linear Quadratic Gaussian, LQG, controller, based on the physical modeling of a commercial Gimbal with two degrees of freedom (2DOF), which is used for first-person applications in unmanned aerial vehicle (UAV). This approach is proposed to make a more realistic representation of the system under study, since it guarantees high accuracy in the simulation of the dynamic response, as compared to the prediction of the mathematical model of the same system. The development of the model starts by sectioning the Gimbal into a series of interconnected links. Subsequently, a fixed reference system is assigned to each link body and the corresponding homogeneous transformation matrices are established, which will allow the calculation of the orientation of each link and the displacement of their centers of mass. Once the total kinetic and potential energy of the mechanical components are obtained, Lagrange’s method is utilized to establish the mathematical model of the mechanical structure of the Gimbal. The equations of motion of the system are then expressed in state space form, with two inputs, two outputs and four states, where the inputs are the torques produced by each one of the motors, the outputs are the orientation of the first two links, and the states are the aforementioned orientations along with their time derivatives. The state space model was implemented in MATLAB’s Simulink environment to compare its prediction of the transient response with the prediction obtained with the representation of the same system using MATLAB’s SimMechanics physical modelling interface. The mathematical model of each one of the three-phase Brushless DC motors is also expressed in state space form, where the three inputs of each motor model are the voltages of the corresponding motor phases, its two outputs are the angular position and angular velocity, and its four states are the currents in two of the phases, the orientation of the motor shaft and its rate of change. This model is experimentally validated by performing a switching sequence in both the simulation model and the physical system and observing that the transient response of the angular position of the motor shaft is in accordance with the theoretical model. The control system design process starts with the interconnection of the models of the mechanical components and the models of the Brushless DC Motor, using their corresponding state space representations. The resulting model features six inputs, two outputs and eight states. The inputs are the voltages in each phase of the two motors in the Gimbal, the outputs are the angular positions of the first two links, and the states are the currents in two of the phases for each motor and the orientations of the first two links, along with their corresponding time derivatives. An optimal LQG control system is designed using MATLAB’s dlqr and Kalman functions, which calculate the gains for the control system and the gains for the states estimated by the observer. The external excitation in each of the phases is carried out by pulse width modulation. Finally, the transient response of the overall system is evaluated for different reference points. The simulation results show very good agreement with the experimental measurements.


2012 ◽  
Vol 462 ◽  
pp. 748-752
Author(s):  
Mei Ning Zhao ◽  
Fang Wang ◽  
Miao Xin Dong

Ammunition fuse shell is carried rapidly by the carrying manipulator from heating furnace to molding machine, so manipulator need accurate repeated position. The servo position control system is established to meet manipulator multi-point and flexible location based on pneumatic driving system. Linear mathematical model of the servo position control system is built based proper assumption, and model was used to analyze control system theoretically. The carrying manipulator can satisfy demands including decided order and positions; the control character is good by debugging.


Author(s):  
W Q Yang

The new electrostatic suspension system (ESS) presented here is applicable to electrostatically suspended gyroscopes (ESG). The electrical disturbing torque (EDT) acting on the gyro rotor is reduced to much lower levels than possible with the conventional methods, thereby increasing the attainable accuracy of the instrument. This is achieved by eliminating the conventional pre-load voltage and instead applying only control voltages via an analogue non-linear pre-compensator to achieve linear position control system operation despite the square law relating the suspension force to the applied voltage. The transient and steady state performance of the complete system, with changes in position reference and external disturbing forces, are examined with the aid of computer simulations.


1976 ◽  
Vol 98 (4) ◽  
pp. 395-406 ◽  
Author(s):  
D. J. Martin ◽  
C. R. Burrows

The frequency responses of an experimental electro-hydraulic position control system and a simulation of the system are compared. Three different valve models are used in the simulation in an attempt to highlight the important parameters of an electro-hydraulic servovalve. It is found that a second order compensated valve model based on steady-state considerations provides a good correlation with the experimental system up to 35Hz and can be used for stability calculations up to 80Hz.


Sign in / Sign up

Export Citation Format

Share Document