A Review of Cooling Systems in Electric/Hybrid Vehicles

Author(s):  
Wamei Lin ◽  
Bengt Sunde´n

Due to increasing oil demand and serious global warming, a green power generation system is urgently requested in transportation. Electric/hybrid vehicles (EV/HEV) have been considered as a potential solution with great promise in achieving high energy/power efficiency and a low environmental impact. The important electric and electronic equipment in EV/HEV are the battery, inverter and motor. However, because of the high power density in the inverters or the low working temperature of batteries, the cooling problems affect significantly the working performance or the lifetime of electric and electronic equipment in EV/HEV. This paper views different cooling systems including the battery cooling system, inverter cooling system and motor cooling system. A general introduction to the EV/HEV and the electric and electronic equipment working processes are briefly presented at first. Then different methods for the battery cooling system, the inverter cooling system and the motor cooling system are outlined and discussed in this paper. Among other things, the means of using phase change material, or electro-thermal modules are significant for the battery cooling system. Finally, some conclusions or recommendations are presented for the cooling systems, in order to promote the EV/HEV development.

2019 ◽  
Vol 103 ◽  
pp. 01001
Author(s):  
Jakub Kuś ◽  
Kyrylo Rudykh ◽  
Marcin Kobas ◽  
Maciej Żołądek ◽  
Szymon Sendłak ◽  
...  

Refrigeration systems are necessary for people living in hot climates. A majority of tropical and subtropical countries uses electrical power as a source of cooling. During the seasons of high ambient temperature there is a significant cooling load due to increased level of energy consumption. Cooling systems are therefore necessary in African countries in order to keep medications and food in safe conditions. Furthermore, there is a power shortage crisis due to the high demand for cooling. TRNSYS software allows to simulate a complete solar-powered absorption cooling system. A model used in an experiment includes PV modules making it advantageous over a conventional cooling system. PV modules of assumed area are sufficient to maintain the temperature inside cooling device below 6°C over the whole year.


Author(s):  
Tunc Icoz ◽  
Yogesh Jaluria

This paper presents a methodology for the design and optimization of the cooling system for electronic equipment. In this approach, inputs from both experimentation and numerical modeling are to be used concurrently to obtain an acceptable or optimal design. The experimental conditions considered are driven by the numerical simulation, and vice versa. Thus, the two approaches are employed in conjunction, rather than separately, as is the case in traditional design methods. Numerical simulation is used to consider different geometries, materials and dimensions, whereas experiments are used for obtaining results for different flow rates and heat inputs, since these can often be varied more easily in experiments than in simulations. Also, transitional and turbulent flows are more accurately and more conveniently investigated experimentally. Thus, by using both the approaches concurrently, the entire design domain is covered, leading to a rapid, convergent, and realistic design process. Two simple configurations of electronic cooling systems are used to demonstrate this approach.


2019 ◽  
Vol 111 ◽  
pp. 01026
Author(s):  
Evdoxia Paroutoglou ◽  
Alireza Afshari ◽  
Niels Chr. Bergsøe ◽  
Peter Fojan ◽  
Göran Hultmark

Cooling of air in buildings has a significant effect on thermal comfort and, consequently, productivity of office occupants. This study presents a state of the art review of energy efficient cooling systems that will provide occupants in buildings with satisfying thermal comfort. Using high-temperature cooling systems combined with renewable energy sources increases the energy efficiency in buildings. Latent heat thermal energy storage (LHTES) using Phase Change Materials (PCM) is a renewable energy source implemented in space cooling applications due to its high energy storage density. Since the share of commercial buildings in need of cooling is increasing, there is a need for developing new technical solutions in order to reduce the energy use without compromising thermal comfort. To this end, a proposed ventilation system, preliminarily analyzed in this paper, is expected to reduce further the energy use. The ventilation system is composed of an air handling unit, a 2-pipe active chilled beam system, and a cooling system including a LHTES using PCM. Few researchers have investigated chilled water air-conditioning systems that integrate a LHTES using PCM. In this review, function characteristics, possibilities and limitations of existing systems are discussed.


2012 ◽  
Vol 608-609 ◽  
pp. 143-150 ◽  
Author(s):  
Qi Fen Li ◽  
Tao Li ◽  
Cui Cui Pan ◽  
Zhi Tian Zhou ◽  
Wei Dong Sun

With characteristics of rapid start-up, small heat resistance,uniform temperature and strong heat transfer ability, heat pipe has been used as a facility in cooling system of concentration photovoltaic system. Through numerical calculation and analysis, heat transfer characteristics of the cooling systems are carried out in this paper. Focusing on research of conventional rectangular fin and small fin fixed on cooling systems, and the heat pipe radiator that may adopted, the high-efficiency cooling system and method which are matched with the requirement of high energy flow density and notuniformity temperature are discussed. Finally, optimization design of the cooling system structure is suggested in the paper.


2019 ◽  
Vol 16 (3) ◽  
pp. 209-224
Author(s):  
I. A. Abdel-Latif ◽  
Mahrous R. Ahmed

Our daily need to cooling system is grown up. The used cooling systems are the source of the harmful changes in the global climate. And so, we need to search a new alternate cooling systems applying environmentally friendly technology that may help in decreasing the pollutions in our world. The progress in materials science allows to use some materials for cooling purposes. This new class of materials is so called "magnetic refrigerator". The basics of magnetic refrigeration depends on the magneto-caloric properties to reach low temperatures and obtain cooling system. The advantage of magnetic refrigerator (MR); First, the cooling efficiency is higher than conventional vapor refrigerator CVM where its cooling efficiency ~30-60% while the cooling efficiency in CVM ~ 5-10%. Second, MR can be more compactly built. Third, it is safe and an environmentally friendly cooling. In this work, we will highlight on the scientific efforts to find optimum properties to be applied as the magnetic refrigeration. In this review the highlights of the scientific efforts to seek for the best alternative materials to be used as a magnetic refrigeration applications. The low coast and small size of magnetic cooling is one the important advantage. This review consists of five sections; I. Introduction, II.Synthesis of MC materials, III. Crystal structure of MC materials and IV. Characterization and applications of MC materials, and V. Conclusions.


2019 ◽  
Author(s):  
Shervin Shoai Naini ◽  
Junkui (Allen) Huang ◽  
Richard Miller ◽  
John R. Wagner ◽  
Denise Rizzo ◽  
...  

Author(s):  
Hendra Wijaksana ◽  
I. Nyoman Suprapta Winaya ◽  
Made Sucipta ◽  
Ainul Ghurri

The high energy consumption of compressor-based cooling system has prompted the researchers to study and develop non-compressor-based cooling system that less energy consumption, less environment damaging but still has high enough cooling performances. Indirect and semi indirect evaporative cooling system is the feasible non-compressor-based cooling systems that can reach the cooling performance required. These two evaporative cooling systems has some different in construction, porous material used, airflow scheme and secondary air-cooling method used for various applications. This paper would report the cooling performances achieved by those two-cooling systems in terms of cooling efficiency, cooling capacity, wet bulb effectiveness, dew point effectiveness, and temperature drop. Porous material used in indirect and semi-indirect evaporative cooling would be highlighted in terms of their type, size, thickness and any other feature. The introduction of nanopore skinless bamboo potency as a new porous material for either indirect or semi-indirect evaporative cooling would be described. In the future study of nanopore skinless bamboo, a surface morphology and several hygrothermal test including sorption, water vapor transmission, thermal conductivity test would be applied, before it utilizes as a new porous material for direct or semi indirect evaporative cooling.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 524
Author(s):  
Shafiqur Rehman ◽  
Muhammad M. Rafique ◽  
Luai M. Alhems ◽  
Md. Mahbub Alam

This paper presents a comprehensive overview of the potential and feasibility of using solar thermal cooling systems in the Kingdom of Saudi Arabia (KSA). The performance of a desiccant cooling system has been determined based on climatic data of 32 cities spread all over the territory of the country. The investigation has been carried out keeping in view the high energy consumption for cooling applications in the country. The analysis has been done using the overall performance of the system, sensible energy ratio, and cooling and regeneration loads. The main objective of this study is to encourage the implementation of solar thermal cooling systems in the country for the development of sustainable buildings. The economic analysis shows that thermal cooling technology can reduce the cost of cooling units, remarkably. Furthermore, the utilization of the proposed system will decrease the dependence on primary energy resources. The saving factor of the proposed system with 1 ton capacity in comparison to the conventional vapor compression unit is found to be 34.6%. The present study also recommends that the government subsidies and incentives can further improve the development and utilization of solar air conditioning technology in developing countries.


Author(s):  
Sophie A. M. McNair ◽  
Alborz Shokrani Chaharsooghi ◽  
Mauro Carnevale ◽  
Andrew Rhead ◽  
Antti Onnela ◽  
...  

AbstractSmall diameter thin-walled pipes, typically with a diameter less than 20 mm and a ratio of outer diameter to wall thickness is 20 or above, have increasingly become a key value adding factor for a number of industries including medical applications, electronics and chemical industries. In high-energy physics experiments, thin-walled pipes are needed in tracking detector cooling systems where the mass of all components needs to be minimised for physics measurement reasons. The pipework must reliably withstand the cooling fluid operation pressures (of up to 100 bar), but must also be able to be reliably and easily joined within the cooling system. Suitable standard and/or commercial solutions combining the needed low mass and reliable high-pressure operation are poorly available. The following review of literature compares the various techniques that exist for the manufacture and joining of thin-walled pipes, both well-established techniques and novel methods which have potential to increase the use of thin-walled pipes within industrial cooling systems. Gaps in knowledge have been identified, along with further research directions. Operational challenges and key considerations which have to be identified when designing a system which uses thin-walled pipes are also discussed.


2020 ◽  
pp. 75-86
Author(s):  
Sergio Antonio Camargo ◽  
Lauro Correa Romeiro ◽  
Carlos Alberto Mendes Moraes

The present article aimed to test changes in cooling water temperatures of males, present in aluminum injection molds, to reduce failures due to thermal fatigue. In order to carry out this work, cooling systems were studied, including their geometries, thermal gradients and the expected theoretical durability in relation to fatigue failure. The cooling system tests were developed with the aid of simulations in the ANSYS software and with fatigue calculations, using the method of Goodman. The study of the cooling system included its geometries, flow and temperature of this fluid. The results pointed to a significant increase in fatigue life of the mold component for the thermal conditions that were proposed, with a significant increase in the number of cycles, to happen failures due to thermal fatigue.


Sign in / Sign up

Export Citation Format

Share Document