Biomechanical, Perceptual, and Cognitive Factors Involved in Maintaining Postural Control While Standing or Walking on Non-Moving and Moving Surfaces: A Literature Review

Author(s):  
Kathleen Allen Rodowicz ◽  
Rahmat Muhammad ◽  
Michelle Heller ◽  
Joseph Sala ◽  
Chimba Mkandawire

Postural control has been defined as “regulating the body’s position in space for the dual purposes of stability and orientation.” How the body achieves postural control depends, in part, on the environment. A person navigating a non-moving surface (e.g. hallway, stairway, or step ladder) will process information and will employ different strategies to maintain postural control than someone who is standing or walking on a moving surface (e.g., forklifts, personal transportation systems, escalators, and moving walkways). In both environments, sensory, cognitive, and motor control systems contribute to postural control. The musculoskeletal system uses muscle activation and joint positioning to control the body’s alignment and muscle tone. The biomechanics of postural control rely on information that the musculoskeletal system receives from sensory systems including the vestibular system, which is generally implicated in behaviors requiring balance control, as well as the somatosensory and visual systems. Furthermore, sensory information from these and other systems can be enhanced by cognitive processes, such as attention. The ability to maintain postural control while standing or walking is critical in preventing falls on both non-moving and moving surfaces. This review focuses on moving surfaces and includes a discussion of the biomechanical, perceptual, and cognitive factors responsible for postural control.

2010 ◽  
Vol 103 (6) ◽  
pp. 3084-3098 ◽  
Author(s):  
Gelsy Torres-Oviedo ◽  
Lena H. Ting

The musculoskeletal redundancy of the body provides multiple solutions for performing motor tasks. We have proposed that the nervous system solves this unconstrained problem through the recruitment of motor modules or functional muscle synergies that map motor intention to action. Consistent with this hypothesis, we showed that trial-by-trial variations in muscle activation for multidirectional balance control in humans were constrained by a small set of muscle synergies. However, apparent muscle synergy structures could arise from characteristic patterns of sensory input resulting from perturbations or from low-dimensional optimal motor solutions. Here we studied electromyographic (EMG) responses for balance control across a range of biomechanical contexts, which alter not only the sensory inflow generated by postural perturbations, but also the muscle activation patterns used to restore balance. Support-surface translations in 12 directions were delivered to subjects standing in six different postural configurations: one-leg, narrow, wide, very wide, crouched, and normal stance. Muscle synergies were extracted from each condition using nonnegative matrix factorization. In addition, muscle synergies from the normal stance condition were used to reconstruct muscle activation patterns across all stance conditions. A consistent set of muscle synergies were recruited by each subject across conditions. When balance demands were extremely different from the normal stance (e.g., one-legged or crouched stance), task-specific muscle synergies were recruited in addition to the preexisting ones, rather generating de novo muscle synergies. Taken together, our results suggest that muscle synergies represent consistent motor modules that map intention to action, regardless of the biomechanical context of the task.


2020 ◽  
Vol 14 (4) ◽  
pp. 216-220
Author(s):  
Zahed Mantashloo ◽  
Heydar Sadeghi ◽  
Mehdi Khaleghi Tazji ◽  
Vanessa Rice ◽  
Elizabeth J Bradshaw

Objective: The aim of this study was to examine the effect of hyper pronated foot on postural control and ankle muscle activity during running and cutting movement (v-cut). Methods: In this Cross-Sectional study, 42 young physically active (exercising three times per week regularly) males participated in this study, including 21 with hyper-pronated feet and 21 with normal feet. Each participant completed a running and cutting task. Body postural control was measured using a force platform (1000Hz) which was synchronized with surface electromyography of selected ankle muscles. MATLAB software was used to process and analyze the data. One-away ANOVA was used to identify any differences between groups. Results: Differing muscle activation patterns in the surrounding ankle musculature (tibialis anterior, peroneus longus) through to reduced postural stability in the medial-lateral direction and increased vertical ground reaction forces were observed between groups. Conclusion: According to the obtained results it seems that subtalar hyper-pronation can be regarded as a factor affecting the biomechanics of cutting by changing activation patterns of the muscles surrounding the ankle, and reducing postural control of the body in medial-lateral direction, but not in anterior-posterior direction.


1997 ◽  
Vol 7 (4) ◽  
pp. 347-365
Author(s):  
T. Mergner ◽  
W. Huber ◽  
W. Becker

The article considers findings and concepts on vestibular-proprioceptive interaction for self-motion perception and postural control under the form of simple describing models. It points out that vestibular-neck interaction is only a small fraction of an extended mechanism of coordinate transformations. This links together the different parts of our bodies, so that sensory information arising in one part of the body can be used for perceptual or motor tasks in other parts. Particular emphasis is put on the problems that arise from imperfect signal transduction in the vestibular semicircular canal systems at low stimulus frequencies/velocities. Also, a “down-and-up-channeling” principle is suggested, by which the body support is linked via coordinate transformations to the internal notion of physical space provided by the vestibular system. Furthermore, the following question is addressed: how does the brain use visual input to overcome the vestibular deficiencies, at the risk of visual self-motion illusions? Finally, a conceptual model of postural control is presented in which a proprioceptive feedback that links the body to its support surface is merged with a loop for postural stabilization in space.


2018 ◽  
Vol 22 (1) ◽  
pp. 4-14
Author(s):  
Katarzyna Zielonka-Pycka ◽  
Elżbieta Szczygieł ◽  
Edward Golec

Introduction: The authors present the influence of two physiotherapy programmes on the re-education of motor behaviour in patients after ischemic stroke. One of them is a programme based on exercises combining PNF and NTD Bobath elements, while the other is a deep trunk muscle exercises with the use of the PUM armchair. Material and methods: The study material was a group of 60 patients of both sexes who suffered ischemic stroke resulting in hemiparesis. They were divided into two groups. Group I consisted of 18 women (60%) and 12 men (40%) who followed the author’s programme of deep muscle activation exercises using the PUM armchair. Group II consisting of 15 women (50%) and 15 men (50%) followed the exercise programme using standard methods, i.e. based on PNF and Bobath methods. Results: They indicate the effectiveness of both methods, with the predominance of the author’s programme. Conclusion: The improvement of deep muscle activity in the examined group of patients has positive influence on their muscle tone, balance and postural control, which in turn, reduces muscle tension, improves gait stereotype and load characteristics of lower limbs. ischemic stroke, postural control, deep muscles Article received: 30.01.2018; Accepted: 30.03.2018


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Bahman Nasseroleslami ◽  
Gholamreza Vossoughi ◽  
Mehrdad Boroushaki ◽  
Mohamad Parnianpour

Despite development of accurate musculoskeletal models for human lumbar spine, the methods for prediction of muscle activity patterns in movements lack proper association with corresponding sensorimotor integrations. This paper uses the directional information of the Jacobian of the musculoskeletal system to orchestrate adaptive critic-based fuzzy neural controller modules for controlling a complex nonlinear redundant musculoskeletal system. The proposed controller is used to control a 3D 3-degree of freedom (DOF) musculoskeletal model of trunk, actuated by 18 muscles. The controller is capable of learning to control from sensory information, without relying on pre-assumed model parameters. Simulation results show satisfactory tracking of movements and the simulated muscle activation patterns conform to previous EMG experiments and optimization studies. The proposed controller can be used as a computationally inexpensive muscle activity generator to distinguish between neural and mechanical contributions to movement and for study of sensory versus motor origins of motor function and dysfunction in human spine.


2017 ◽  
Vol 117 (2) ◽  
pp. 846-852 ◽  
Author(s):  
Chantelle D. Murnaghan ◽  
Mark G. Carpenter ◽  
Romeo Chua ◽  
J. Timothy Inglis

Small-amplitude, higher frequency oscillations of the body or limb are typically observed when humans attempt to maintain the position of a body or limb in space. Recent investigations have suggested that these involuntary movements of the body during stance could be used as an exploratory means of acquiring sensory information. In the present study, we wanted to determine whether a similar phenomenon would be observed in an upper limb postural task that does not involve whole body postural control. Participants were placed in a supine position with the arm pointing vertically and were asked to maintain the position of the limb in space with and without visual feedback. The wrist was attached to an apparatus that allowed the experimenter to stabilize or “lock” movements of the arm without the participants' awareness. When participants were “locked,” the forces recorded predicted greater accelerations than those observed when the arm was freely moving with and without visual feedback. From unlocked to locked, angular accelerations increased in the eyes-closed condition and when participants were provided visual feedback of arm angular displacements. Irrespective of their origin, small displacements of the limb may be used as an exploratory means of acquiring sensory information from the surrounding environment. NEW & NOTEWORTHY The role of movement variability during a static limb position task is currently unknown. We tested whether variability remains in the absence of sensory-based error with an apparatus that stabilized the limb without the participant's knowledge during a static postural task. Increased forces observed during arm stabilization predicted movements greater than those observed when not externally stabilized. These results suggest movement variability during static postures could facilitate the gathering of sensory information from the surrounding environment.


2018 ◽  
Vol 15 (143) ◽  
pp. 20170816 ◽  
Author(s):  
Sjoerd M. Bruijn ◽  
Jaap H. van Dieën

During human walking, the centre of mass (CoM) is outside the base of support for most of the time, which poses a challenge to stabilizing the gait pattern. Nevertheless, most of us are able to walk without substantial problems. In this review, we aim to provide an integrative overview of how humans cope with an underactuated gait pattern. A central idea that emerges from the literature is that foot placement is crucial in maintaining a stable gait pattern. In this review, we explore this idea; we first describe mechanical models and concepts that have been used to predict how foot placement can be used to control gait stability. These concepts, such as for instance the extrapolated CoM concept, the foot placement estimator concept and the capture point concept, provide explicit predictions on where to place the foot relative to the body at each step, such that gait is stabilized. Next, we describe empirical findings on foot placement during human gait in unperturbed and perturbed conditions. We conclude that humans show behaviour that is largely in accordance with the aforementioned concepts, with foot placement being actively coordinated to body CoM kinematics during the preceding step. In this section, we also address the requirements for such control in terms of the sensory information and the motor strategies that can implement such control, as well as the parts of the central nervous system that may be involved. We show that visual, vestibular and proprioceptive information contribute to estimation of the state of the CoM. Foot placement is adjusted to variations in CoM state mainly by modulation of hip abductor muscle activity during the swing phase of gait, and this process appears to be under spinal and supraspinal, including cortical, control. We conclude with a description of how control of foot placement can be impaired in humans, using ageing as a primary example and with some reference to pathology, and we address alternative strategies available to stabilize gait, which include modulation of ankle moments in the stance leg and changes in body angular momentum, such as rapid trunk tilts. Finally, for future research, we believe that especially the integration of consideration of environmental constraints on foot placement with balance control deserves attention.


Author(s):  
Rajani Singh

Cerebellum is the largest part of the hindbrain and weighs about 150 g. It is enshrined in posterior cranial fossa behind the pons and medulla oblongata and separated from these structures by cavity of fourth ventricle. It is connected to brainstem by three fibre tracts known as cerebellar peduncles. Cerebellum controls the same side of body. It precisely coordinates skilled voluntary movements by controlling strength, duration and force of contraction, so that they are smooth, balanced and accurate. It is also responsible for maintaining equilibrium, muscle tone and posture of the body. This is achieved through the use of somatic sensory information in modulating the motor output from the cerebrum and brainstem. Sherrington regarded cerebellum as the head ganglion of the proprioceptive system. Dysfunction of cerebellum along with degenerative diseases of cerebellum such as spinocerebellar ataxia, multiple sclerosis, malignant tumours, etc. may culminate into disequilibrium, hypotonia, difficulty in talking, sleeping, maintaining muscular coordination and dyssynergia which at times may be life threatening. Hence, knowledge of anatomy of cerebellum is imperative for neuroanatomists and neurosurgeons.


1992 ◽  
Vol 4 (3) ◽  
pp. 186-198
Author(s):  
Kazue Nishihara ◽  
◽  
Mitsuo Wada ◽  
Ryouichi Hashimoto

Application of the postural control mechanisms to the flexible movemen mechanisms will develop the humaninterface technology which aims to aid and substitute human motor function. In this research study, physiological and biomechanical knowledge of the postural control mechanisms of living bodies are summarized to give basic materials to the future mechanical equilibrating technology. (a) Postural control system of living organisms. The system is composed of four stratified subsystems of spine and brain stem, cerebellum, basal ganglia, and cerebrum. Spinal reflex, which is thought to be a fundamental servo mechanism, maintains automatically man's standing posture. Brain stem reflex controls posture and dynamical balance of a body to stabilize involuntary motions. Cerebellum, conducting cooperation control of partial motions of the body, adjusts posture and maintains equilibrium. Basal ganglia is thought to be a higher nerve center to stabilize slow and repetitive body actions. Cerebral motor cortex executes fine and subtle controls in voluntary actions. (b) Mechanical equilibrators. Mechanical equilibrafors must be of use in future legged robots travelling on rough terrain surfaces. The following three equilibrators were examined; 1) The leg supporting pivot slides up and down, right and left, 2) The leg supporting pivot has a torque generator, 3) The upper limb is equipped with some reaction mechanisms. (c) Problems of balance and walking controls. Dynamic motion of a leg-body system is achieved by three control modes of leaping hight, posture and balance control. The three modes of the motion control should be realized by the sensor directed parallel and stratified controling architecture. Considering coming aging society, postural control technology in the medical and welfare fields is hopeful of advance in assistance and substitution of man's lower limb function.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Angélica C. Alonso ◽  
Luis Mochizuki ◽  
Natália Mariana Silva Luna ◽  
Sérgio Ayama ◽  
Alexandra Carolina Canonica ◽  
...  

The aim of this study was to evaluate the relation between the sensory and anthropometric variables in the quiet standing.Methods. One hundred individuals (50 men, 50 women; 20–40 years old) participated in this study. For all participants, the body composition (fat tissue, lean mass, bone mineral content, and bone mineral density) and body mass, height, trunk-head length, lower limb length, and upper limb length were measured. The center of pressure was measured during the quiet standing posture, the eyes opened and closed with a force platform. Correlation and regression analysis were run to analyze the relation among body composition, anthropometric data, and postural sway.Results. The correlation analysis showed low relation between postural sway and anthropometric variables. The multiple linear regression analyses showed that the height explained 12% of the mediolateral displacement and 11% of the center of pressure area. The length of the trunk head explained 6% of displacement in the anteroposterior postural sway. During eyes closed condition, the support basis and height explained 18% of mediolateral postural sway.Conclusion. The postural control depends on body composition and dimension. This relation is mediated by the sensory information. The height was the anthropometric variable that most influenced the postural sway.


Sign in / Sign up

Export Citation Format

Share Document