Thermal and Fluid-Dynamic Behaviour of Confined Slot Impinging Jets With Nanofluids

Author(s):  
O. Manca ◽  
P. Mesolella ◽  
S. Nardini ◽  
D. Ricci

Heat transfer enhancement technology has the aim to develop more efficient systems as demanded in many applications in the fields of automotive, aerospace, electronic and process industry. A possible solution to obtain efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the introduction of nanoparticles in the working fluids can be considered in order to improve the thermal performances of the base fluids. In this paper a numerical investigation on confined impinging slot jets working with water or water/Al2O3 nanofluid is described. The flow is turbulent and a constant temperature is applied on the impinging surface. A single-phase model approach has been adopted. Different geometric ratios and nanoparticle volume concentrations have been considered at Reynolds numbers ranging from 5000 to 20000. The aim consists into study the thermal and fluid-dynamic behaviour of the system. The stream function contours showed that the intensity and size of the vortex structures depend on the confining effects, Reynolds number and particle concentrations. The local Nusselt number profiles show the highest values at the stagnation point and the average Nusselt number increases for increasing particle concentrations and Reynolds numbers and the highest values are observed for H/W = 10 The required pumping power increases as particle concentration as well as Reynolds number grow and it is at most 4 times greater than the values calculated in the case of base fluid.

2019 ◽  
Vol 30 (7) ◽  
pp. 3827-3842
Author(s):  
Samer Ali ◽  
Zein Alabidin Shami ◽  
Ali Badran ◽  
Charbel Habchi

Purpose In this paper, self-sustained second mode oscillations of flexible vortex generator (FVG) are produced to enhance the heat transfer in two-dimensional laminar flow regime. The purpose of this study is to determine the critical Reynolds number at which FVG becomes more efficient than rigid vortex generators (RVGs). Design/methodology/approach Ten cases were studied with different Reynolds numbers varying from 200 to 2,000. The Nusselt number and friction coefficients of the FVG cases are compared to those of RVG and empty channel at the same Reynolds numbers. Findings For Reynolds numbers higher than 800, the FVG oscillates in the second mode causing a significant increase in the velocity gradients generating unsteady coherent flow structures. The highest performance was obtained at the maximum Reynolds number for which the global Nusselt number is improved by 35.3 and 41.4 per cent with respect to empty channel and rigid configuration, respectively. Moreover, the thermal enhancement factor corresponding to FVG is 72 per cent higher than that of RVG. Practical implications The results obtained here can help in the design of novel multifunctional heat exchangers/reactors by using flexible tabs and inserts instead of rigid ones. Originality/value The originality of this paper is the use of second mode oscillations of FVG to enhance heat transfer in laminar flow regime.


2021 ◽  
Author(s):  
Matthew Searle ◽  
Arnab Roy ◽  
James Black ◽  
Doug Straub ◽  
Sridharan Ramesh

Abstract In this paper, experimental and numerical investigations of three variants of internal cooling configurations — dimples only, ribs only and ribs with dimples have been explored at process conditions (96°C and 207bar) with sCO2 as the coolant. The designs were chosen based on a review of advanced internal cooling features typically used for air-breathing gas turbines. The experimental study described in this paper utilizes additively manufactured square channels with the cooling features over a range of Reynolds number from 80,000 to 250,000. Nusselt number is calculated in the experiments utilizing the Wilson Plot method and three heat transfer characteristics — augmentation in Nusselt number, friction factor and overall Thermal Performance Factor (TPF) are reported. To explore the effect of surface roughness introduced due to additive manufacturing, two baseline channel flow cases are considered — a conventional smooth tube and an additively manufactured square tube. A companion computational fluid dynamics (CFD) simulation is also performed for the corresponding cooling configurations reported in the experiments using the Reynolds Averaged Navier Stokes (RANS) based turbulence model. Both experimental and computational results show increasing Nusselt number augmentation as higher Reynolds numbers are approached, whereas prior work on internal cooling of air-breathing gas turbines predict a decay in the heat transfer enhancement as Reynolds number increases. Comparing cooling features, it is observed that the “ribs only” and “ribs with dimples” configurations exhibit higher Nusselt number augmentation at all Reynolds numbers compared to the “dimples only” and the “no features” configurations. However, the frictional losses are almost an order of magnitude higher in presence of ribs.


2001 ◽  
Author(s):  
Lamyaa A. El-Gabry ◽  
Deborah A. Kaminski

Abstract Measurements of the local heat transfer distribution on smooth and roughened surfaces under an array of angled impinging jets are presented. The test rig is designed to simulate impingement with cross-flow in one direction which is a common method for cooling gas turbine components such as the combustion liner. Jet angle is varied between 30, 60, and 90 degrees as measured from the impingement surface, which is either smooth or randomly roughened. Liquid crystal video thermography is used to capture surface temperature data at five different jet Reynolds numbers ranging between 15,000 and 35,000. The effect of jet angle, Reynolds number, gap, and surface roughness on heat transfer efficiency and pressure loss is determined along with the various interactions among these parameters. Peak heat transfer coefficients for the range of Reynolds number from 15,000 to 35,000 are highest for orthogonal jets impinging on roughened surface; peak Nu values for this configuration ranged from 88 to 165 depending on Reynolds number. The ratio of peak to average Nu is lowest for 30-degree jets impinging on roughened surfaces. It is often desirable to minimize this ratio in order to decrease thermal gradients, which could lead to thermal fatigue. High thermal stress can significantly reduce the useful life of engineering components and machinery. Peak heat transfer coefficients decay in the cross-flow direction by close to 24% over a dimensionless length of 20. The decrease of spanwise average Nu in the crossflow direction is lowest for the case of 30-degree jets impinging on a roughened surface where the decrease was less than 3%. The decrease is greatest for 30-degree jet impingement on a smooth surface where the stagnation point Nu decreased by more than 23% for some Reynolds numbers.


Author(s):  
Gary D. Lock ◽  
Michael Wilson ◽  
J. Michael Owen

Modern gas turbines are cooled using air diverted from the compressor. In a “direct-transfer” pre-swirl system, this cooling air flows axially across the wheel-space from stationary pre-swirl nozzles to receiver holes located in the rotating turbine disc. The distribution of the local Nusselt number, Nu, on the rotating disc is governed by three non-dimensional fluid-dynamic parameters: pre-swirl ratio, βp, rotational Reynolds number, Reφ, and turbulent flow parameter, λT. This paper describes heat transfer measurements obtained from a scaled model of a gas turbine rotor-stator cavity, where the flow structure is representative of that found in the engine. The experiments reveal that Nu on the rotating disc is axisymmetric except in the region of the receiver holes, where significant two-dimensional variations have been measured. At the higher coolant flow rates studied, there is a peak in heat transfer at the radius of the pre-swirl nozzles, associated with the impinging jets from the pre-swirl nozzles. At lower coolant flow rates, the heat transfer is dominated by viscous effects. The Nusselt number is observed to increase as either Reφ or λT increases.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Ankit Tiwari ◽  
Savas Yavuzkurt

The goal of this study is to evaluate the computational fluid dynamic (CFD) predictions of friction factor and Nusselt number from six different low Reynolds number k–ε (LRKE) models namely Chang–Hsieh–Chen (CHC), Launder–Sharma (LS), Abid, Lam–Bremhorst (LB), Yang–Shih (YS), and Abe–Kondoh–Nagano (AKN) for various heat transfer enhancement applications. Standard and realizable k–ε (RKE) models with enhanced wall treatment (EWT) were also studied. CFD predictions of Nusselt number, Stanton number, and friction factor were compared with experimental data from literature. Various parameters such as effect of type of mesh element and grid resolution were also studied. It is recommended that a model, which predicts reasonably accurate values for both friction factor and Nusselt number, should be chosen over disparate models, which may predict either of these quantities more accurately. This is based on the performance evaluation criterion developed by Webb and Kim (2006, Principles of Enhanced Heat Transfer, 2nd ed., Taylor and Francis Group, pp. 1–72) for heat transfer enhancement. It was found that all LRKE models failed to predict friction factor and Nusselt number accurately (within 30%) for transverse rectangular ribs, whereas standard and RKE with EWT predicted friction factor and Nusselt number within 25%. Conversely, for transverse grooves, AKN, AKN/CHC, and LS (with modified constants) models accurately predicted (within 30%) both friction factor and Nusselt number for rectangular, circular, and trapezoidal grooves, respectively. In these cases, standard and RKE predictions were inaccurate and inconsistent. For longitudinal fins, Standard/RKE model, AKN, LS and Abid LRKE models gave the friction factor and Nusselt number predictions within 25%, with the AKN model being the most accurate.


Author(s):  
S. Gilchrist ◽  
C. Y. Ching ◽  
D. Ewing

An experimental investigation was performed to determine the effect that surface roughness has on the heat transfer in an axial Taylor-Couette flow. The experiments were performed using an inner rotating cylinder in a stationary water jacket for Taylor numbers of 106 to 5×107 and axial Reynolds numbers of 900 to 2100. Experiments were performed for a smooth inner cylinder, a cylinder with two-dimensional rib roughness and a cylinder with three-dimensional cubic protrusions. The heat transfer results for the smooth cylinder were in good agreement with existing experimental data. The change in the Nusselt number was relatively independent of the axial Reynolds number for the cylinder with rib roughness. This result was similar to the smooth wall case but the heat transfer was enhanced by 5% to 40% over the Taylor number range. The Nusselt number for the cylinder with cubic protrusions exhibited an axial Reynolds number dependence. For a low axial Reynolds number of 980, the Nusselt number increased with the Taylor number in a similar way to the other test cylinders. At higher axial Reynolds numbers, the heat transfer was initially independent of the Taylor number before increasing with Taylor number similar to the lower Reynolds number case. In this higher axial Reynolds number case the heat transfer was enhanced by up to 100% at the lowest Taylor number of 1×106 and by approximately 35% at the highest Taylor number of 5×107.


Author(s):  
Junsik Lee ◽  
Zhong Ren ◽  
Phil Ligrani ◽  
Michael D. Fox ◽  
Hee-Koo Moon

Data which illustrate the combined and separate effects of hole array spacing, jet-to-target plate distance, and Reynolds number on cross-flows, and the resulting heat transfer, for an impingement jet array are presented. The array of impinging jets are directed to one flat surface of a channel which is bounded on three sides. Considered are Reynolds numbers ranging from 8,000 to 50,000, jet-to-target plate distances of 1.5D, 3.0D, 5.0D, and 8.0D, and steamwise and spanwise hole spacing of 5D, 8D, and 12D, where D is the impingement hole diameter. In general, the cumulative accumulations of cross-flows, from sequential rows of jets, reduce the effectiveness of each individual jet (especially for jets at larger streamwise locations). The result is sequentially decreasing periodic Nusselt number variations with streamwise development, which generally become more significant as the Reynolds number increases, and as hole spacing decreases. In other situations, the impingement cross-flow results in locally augmented Nusselt numbers. Such variations most often occur at larger downstream locations, as jet interactions are more vigorous, and local magnitudes of mixing and turbulent transport are augmented. This occurs in channels at lower Reynolds numbers, where impingement jets are confined by smaller hole spacing, and smaller jet-to-target plate distance. The overall result is complex dependence of local, line-averaged, and spatially-averaged Nusselt numbers on hole array spacing, jet-to-target plate distance, and impingement jet Reynolds number. Of particular importance are the effects of these parameters on the coherence of the shear layers which form around the impingement jets, as well as on the Kelvin-Helmholtz instability vortices which develop within the shear interface around each impingement jet.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Ali Mohammadi ◽  
Ali Koşar

This study focuses on microheat sinks with different staggered arrangements of micro pin fins (MPFs). A rectangular microchannel with the dimensions of 5000 × 1500 × 100 μm3 (l′ × w′ × h′) was considered for all the configurations while different MPF diameters, height over diameter ratio (H/D), and longitudinal and transversal pitch ratios (SL/D and ST/D) were considered in different arrangements. Using the ansys fluent 14.5 commercial software, the simulations were done for different Reynolds numbers between 20 and 160. A constant heat flux of 30 W/cm2 was applied through the bottom heating section. The performances of the microheat sinks were evaluated using design parameters, namely pressure drop, friction factor, Nusselt number, and thermal-hydraulic performance index (TPI). The effect of each geometrical parameter as well as wake-pin fin interaction patterns were carefully studied using the streamline patterns and temperature profiles of each configuration. The results reveal a great dependency of trends in pressure drops and Nusselt numbers on the wake region lengths as well as the local velocity and pressure gradients. Moreover, the wake region lengths mostly contribute to the increase in obtained pressure drop and Nusselt number with Reynolds number. Although an increase in the H/D and SL/D ratios results in an increase and a decrease in pressure drop, respectively, the effect on the Nusselt number depends on other geometrical parameters and Reynolds number. A larger ST/D ratio generally results in a decrease in the pressure drop and Nusselt number. Finally, while the friction factor decreases with Reynolds number, two different trends are seen for the TPI values of configurations with the H/D ratio of 1 and 2 (D = 100 and 50 μm). While the trend in the TPIs is increasing for Reynolds numbers between 20 and 40, it reverses for higher Reynolds numbers with a steeper slope in the configurations with the ST/D ratio of 1.5.


Author(s):  
N. K. Burgess ◽  
P. M. Ligrani

Experimental results, measured on dimpled test surfaces placed on one wall of different channels, are given for a ratio of air inlet stagnation temperature to surface temperature of approximately 0.94, and Reynolds numbers based on channel height from 9,940 to 74,800. The data presented include friction factors, local Nusselt numbers, spatially-averaged Nusselt numbers, and globally-averaged Nusselt numbers. The ratios of dimple depth to dimple print diameter δ/D are 0.1, 0.2, and 0.3 to provide information on the influences of dimple depth. The ratio of channel height to dimple print diameter is 1.00. At all Reynolds numbers considered, local and spatially-resolved Nusselt number augmentations increase as dimple depth increases (and all other experimental and geometric parameters are held approximately constant). These are attributed to: (i) increases in the strengths and intensity of vortices and associated secondary flows ejected from the dimples, as well as (ii) increases in the magnitudes of three-dimensional turbulence production and turbulence transport. The effects of these phenomena are especially apparent in local Nusselt number ratio distributions measured just inside of the dimples, and just downstream of the downstream edges of the dimples. Data are also presented to illustrate the effects of Reynolds number, and streamwise development for δ/D = 0.1 dimples. Significant local Nusselt number ratio variations are observed at different streamwise locations, whereas variations with Reynolds number are mostly apparent on flat surfaces just downstream of individual dimples.


Author(s):  
Tarek M. Abdel-Salam

This study presents results for flow and heat transfer characteristics of two-dimensional rectangular impinging jets and three-dimensional circular impinging jets. Flow geometries under consideration are single and multiple impinging jets issued from a plane wall. Both confined and unconfined configurations are simulated. Effects of Reynolds number and the distance between the jets are investigated. Results are obtained with a finite volume computational fluid dynamics (CFD) code. Structured grids are used in all cases of the present study. Turbulence is treated with a two equation k-ε model. Different jet velocities have been examined corresponding to Reynolds numbers of 5,000 to 20,000. Results of the three-dimensional cases show that Reynolds number has no effect on the velocity distribution of the center jet. Results of both two-dimensional and three-dimensional cases show that Reynolds number highly affects the heat transfer and values of the Nusselt number. The maximum Nusselt number was always found at the stagnation point of the center jet.


Sign in / Sign up

Export Citation Format

Share Document