Engineering an Undergarment for Flash/Flame Protection

Author(s):  
Frazier Hull ◽  
Jett Gambill ◽  
Andrew Hansche ◽  
Gian Agni ◽  
John Evangelista ◽  
...  

This paper presents a continuation of projects spanning the last two years. In year one, the physical characteristics and medical effects of burns and Improvised Explosive Device, IED, blasts were investigated [1]. In year two, the possible use of commercial intumescent materials with fabric was studied [2]. The identified needs for research into the effect of undergarments on burn protection are focused in this study. Additionally, Thermal Protective Performance, TPP-(ISO 17492) and Air Permeability, AP-(ASTM D737) tests were performed to gather the data needed for the analysis of flame and thermal resistance as well as comfort and breathability. Out of the seven samples evaluated, the Sample D, composed of 94% m-aramid, 5% p-aramid and 1% static dissipative fiber, shirt had the best overall performance in terms of air permeability, average TPP rating, and time to second degree burn. Another finding was that polyester undershirts may be dangerous in the event of a flash fire situation because the fabric could melt and stick to the Soldier’s skin causing more severe burn injury. Additionally, an initial framework for a basic mathematical model representing the system was created. This model can be further refined to yield more accurate results and eventually be used to help predict the material properties required in fabrics to design a more protective undergarment.

2013 ◽  
Vol 821-822 ◽  
pp. 233-236
Author(s):  
Xiao Hui Li ◽  
Min Wang ◽  
Jun Li

Objective and quantitative evaluation of garment thermal protective performance should be based on the simulation of human in actual thermal environments as realistic as possible. In this paper, by using a new type of flame manikin which can rotate and make different postures, the dynamic scene where a firefighter wearing fire protective ensembles rescue in the flash fire was simulated. The skin burn prediction result showed that the total burn percent suffered by the manikin was 7.76%, of which the 2nd degree burn and the 3rd degree burn was 5.12% and 2.64% respectively. This indicated that the firefighter ensembles exhibited relatively good thermal protective performance. It can provide enough protection for the firefighter in 8s dynamic exposure while more protection should be added to the head.


2017 ◽  
Vol 88 (20) ◽  
pp. 2339-2352 ◽  
Author(s):  
Sumit Mandal ◽  
Simon Annaheim ◽  
Thomas Pitts ◽  
Martin Camenzind ◽  
René M Rossi

This study aims to investigate the thermal protective performance of fabrics used in firefighters' clothing under high-intensity fire exposure. The performance of thermal protective fabric systems with different physical properties was evaluated under laboratory simulated fire exposure. Additionally, the influence of the configuration of the fire exposure tests and modes of heat transfer through the fabrics was also thoroughly investigated. The protective performance was evaluated using the standard small-scale flame [International Organization for Standardization (ISO) 9151:1995] and radiant heat (ISO 6942:2002) exposure tests. Additionally, the protective performance was evaluated under flash-fire exposure using a newly developed hexagon test. The protective performance values obtained from the small-scale (flame and radiant heat) and hexagon (flash fire) tests were compared and discussed. It has been found that a multi-layered fabric with high weight, thickness, and thermal resistance can significantly and positively affect the protective performance. If the air permeability of this fabric is high, it can show a lower protective performance; however, the impact of air permeability on the protective performance is insignificant especially in the case of the hexagon test. Notably, the protective performance can differ under two types of small-scale tests − flame and radiant heat. Also, this protective performance value is generally higher in the case of hexagon test in comparison with the small-scale tests. These differences in protective performance are mainly due to the unique configurations of these tests and/or different modes of heat transfer through the tested fabrics. The findings from this study will guide textile or materials engineers in the design and selection of materials for high performance thermal protective clothing; in turn, it will improve the occupational health and safety for firefighters.


2004 ◽  
Vol 74 (12) ◽  
pp. 1033-1040 ◽  
Author(s):  
Guowen Song ◽  
Roger L. Barker ◽  
Hechmi Hamouda ◽  
Andrey V. Kuznetsov ◽  
Patirop Chitrphiromsri ◽  
...  

2017 ◽  
Vol 88 (8) ◽  
pp. 847-862 ◽  
Author(s):  
Hui Zhang ◽  
Guowen Song ◽  
Haitao Ren ◽  
Juan Cao

Current firefighter protective clothing is composed of multilayer fabric systems. The outer shell fabrics inevitably become wet in the process of firefighters performing their duties, and sweat may also increase moisture in the inner layers of protective clothing. In this study, two kinds of outer shell fabrics (aramid IIIA fabric and aramid 1313 and flame-retardant viscose-blended fabric) and two kinds of thermal liner fabrics with different thicknesses were selected. Three wetness conditions were simulated for the outer shell fabric, thermal liner fabric and both fabrics together. A modified thermal protective performance (TPP) tester was applied to assess TPP provided by these wetted fabrics; in addition, second-degree skin burn time was predicted and absorbed energy indexes were calculated. The regression method was employed to create fitting curves for absorbed energy and second-degree burn time in different configurations and the Pearson correlation was established to analyze their relationship, in which the lowest R2 value could reach 0.9122 and p-values were all much less than 0.05. Performance results for both wet conditions indicated that outer shell moisture and a thicker thermal liner have a positive and increased negative effect, respectively, on fabric TPP. When the sample S-3-D (aramid 1313 and flame-retardant viscose-blended fabric, moisture barrier and the thin thermal liner) was both wetted in the outer shell and thermal liner, its second-degree burn time was improved by 12.8% over performance in dry conditions. These findings may have important applications for the design and manufacture of optimal protective performance clothing systems.


2020 ◽  
Vol 8 ◽  
Author(s):  
Jiro Oba ◽  
Motonori Okabe ◽  
Toshiko Yoshida ◽  
Chika Soko ◽  
Moustafa Fathy ◽  
...  

Abstract Background Severe burn injuries create large skin defects that render the host susceptible to bacterial infections. Burn wound infection often causes systemic sepsis and severe septicemia, resulting in an increase in the mortality of patients with severe burn injuries. Therefore, appropriate wound care is important to prevent infection and improve patient outcomes. However, it is difficult to heal a third-degree burn injury. The aim of this study was to investigate whether hyperdry human amniotic membrane (HD-AM) could promote early granulation tissue formation after full-thickness skin excision in third-degree burn injury sites in mice. Methods After the development of HD-AM and creation of a third-degree burn injury model, the HD-AM was either placed or not placed on the wound area in the HD-AM group or HD-AM group, respectively. The groups were prepared for evaluation on postoperative days 1, 4 and 7. Azan staining was used for granulation tissue evaluation, and estimation of CD163, transforming growth factor beta-1 (TGF-β1), vascular endothelial growth factor (VEGF), CD31, alpha-smooth muscle actin (α-SMA) and Iba1 expression was performed by immunohistochemical staining. Quantitative reverse-transcription polymerase chain reaction (PCR) was used to investigate gene expression of growth factors, cell migration chemokines and angiogenic and inflammatory markers. Results The HD-AM group showed significant early and qualitatively good growth of granulation tissue on the full-thickness skin excision site. HD-AM promoted early-phase inflammatory cell infiltration, fibroblast migration and angiogenesis in the granulation tissue. Additionally, the early infiltration of cells of the immune system was observed. Conclusions HD-AM may be useful as a new wound dressing material for full-thickness skin excision sites after third-degree burn injuries, and may be a new therapeutic technique for improving the survival rate of patients with severe burn injuries.


2017 ◽  
Vol 88 (16) ◽  
pp. 1847-1861 ◽  
Author(s):  
Hui Zhang ◽  
Guowen Song ◽  
Yiming Gu ◽  
Haitao Ren ◽  
Juan Cao

Firefighters wearing protective clothing perspire profusely in the process of performing their duties, and sweat increases moisture in the inner layers of multilayer protective clothing. Also, the outer shell fabrics inevitably become wet. In this study, two kinds of outer shell fabrics (aramid IIIA fabric and aramid 1313 and flame-retardant viscose-blended fabric) and three kinds of thermal liner fabrics with different thicknesses were selected. Two wetness conditions were investigated to simulate the sweating in thermal liner fabric with or without the wet outer shell fabric. A modified thermal protective performance (TPP) tester was employed to explore the effects of moisture and its distribution on stored thermal energy developed in six fabric systems and on TPP under flash exposure. Pearson correlations were established to analyze the relationships of the fabric systems’ thickness and second-degree burn time, and of absorbed energy and second-degree burn time in different configurations. The statistical analysis from these obtained data indicated that the thickness of fabric systems had no significant correlation for second-degree burn time ( p > 0.05), but the absorbed energy exhibited a strong relation (the lowest R2 value could reach 0.8070 and p-values were all much less than 0.05). Performance results for the wet thermal liner indicated that the negative impact on thermal protection reached the greatest degree in 15% wetness, but in some extreme situations (100% wetness), the performance was improved (the maximum increase can achieve 116.2% over performance in dry condition). However, the existing moisture in the outer shell showed a positive effect. These findings will enable the engineering of textile materials that achieve high performance protection from thermal hazards and give some guidance to firefighters during operations.


2014 ◽  
Vol 1052 ◽  
pp. 547-554
Author(s):  
Hua Zhang ◽  
Yan Gao ◽  
Zhong Qiang Wang ◽  
Mei Tong ◽  
Jie Zhang

Firefighter uniform made of various flame retardant materials is put as the object. Analyzing the thermal protective performance of different composite structures covering outer fabrics, lagging materials and comfortable layer materials, discuss the best combination of supporting structures. Adoption flash fire simulation, verify the integrated prevention ability of firefighter uniform. The matching of different levels has a significant impact on the thermal protective performance, first the outer layer, then comfortable layer and thermal protective coating. Although inherent fire resistant fiber for the main material of the outer fabric has better durability and thermal protective performance, the fire might experience obvious contraction which leads to embrittlements. For insulation flocculus, the ratio of aramid fiber 1313 and aramid fiber 1414 at 9:1 has excellent thermal insulation. For comfortable layer, inherent fire resistant fiber has no notable effect on the clothing’s overall thermal protection performance; the polysulfonamide fiber is a relative better choice.


2017 ◽  
Vol 730 ◽  
pp. 595-600 ◽  
Author(s):  
Hua Ling He ◽  
Zhi Cai Yu

Moisture is widely recognized as one of the most important factors that influencing thermal comfort and thermal protective performance of firefighters. In this study, it was aimed to investigate the effect of liquid moisture on the transfer wicking behavior from the wet underwear fabric to the dry outerwear layer within two-layer fabric assemblies, which is typically used by wildland firefighters. The obtained results indicated that the transfer wicking behavior between the entire two-layer clothing systems selected is not very obvious. Results indicated that the transfer wicking ratio was low 5 percent of water content initially held in wet fabric. The greater amount of liquid water initially held in two-layer fabric assemblies, the greater the amount of water transferred. The effect of moisture level on air permeability of bi-layer fabric constructions associated with thermo-physiological comfort properties was also investigated. Results show that the air permeability of multilayer fabrics decreased with an increase of moisture content. Compared to having no water, the air permeability reduced to 50 percent when the water content reached up to 70%. The perception gained from this work could serve as technical basis for further development of high-performance firefighter protective clothing.


Author(s):  
Jung-Hyun Kim ◽  
Do-Hee Kim ◽  
Joo-Young Lee ◽  
Aitor Coca

Firefighter protective clothing (FPC) provides barrier protection from hazardous materials. Two of the important performance factors tested for FPC are total heat loss (THL) and thermal protective performance (TPP). The present study evaluated the relationship between THL and TPP, and tested its subsequent influence on burn injury prediction via the flame-engulfment manikin test, using three FPC samples from the United States, Europe, and South Korea. The study results showed an inverse relationship between THL and TPP (r=-.949, p<.001). Predicted total area of second and third degree burn injury was 7.2±1.6, 19.7±4.1, and 5.0±1.0% for the United States, European, and South Korean FPC, respectively, which was significantly explained by both THL and TPP (F=34.630, p=0.001, R2=.920). The flame manikin test results showed that affected burn injury areas are not uniform over the body, but more frequent on the head and limbs.


2010 ◽  
Vol 47 (3) ◽  
pp. 615-629 ◽  
Author(s):  
Alexander Hummel ◽  
Roger Barker ◽  
Kevin Lyons ◽  
A. Shawn Deaton ◽  
John Morton-Aslanis

Sign in / Sign up

Export Citation Format

Share Document