Fluid Flow Through Branched Channels in a Fracture Plane in an Enhanced Geothermal System

Author(s):  
Rosemarie Mohais ◽  
Chaoshui Xu ◽  
Peter A. Dowd

Fluid flow in Enhanced Geothermal Systems (EGS) occurs primarily through fractures which are embedded in an almost impermeable granite rock matrix. Experimental and numerical studies have shown that flow in fractures exhibits channeling effects; this means that flow occurs along preferred pathways, most likely the paths of least resistance. There has been evidence to date of dendritic and star-like patterns in granite and as a result, authors have used fractal theory in order to address flow phenomena in these patterns. The application of Bejan’s Constructal theory to this problem however has never been attempted. We base our model on dendritic patterns of flow paths in heterogeneous rock fractures. Flow enters into a main channel which bifurcates into daughter channels of unique dimensions of length and height. We study these parameters for consecutive channels in the flow path and show that for minimization of resistance to flow within a plane using area and volume constraints for a T-shaped channel, a simple relationship holds for the ratios of lengths and heights which will enable maximum flow for this configuration.

2020 ◽  
Author(s):  
Kyung Won Chang ◽  
Gungor Beskardes ◽  
Chester Weiss

<p>Hydraulic stimulation is the process of initiating fractures in a target reservoir for subsurface energy resource management with applications in unconventional oil/gas and enhanced geothermal systems. The fracture characteristics (i.e., number, size and orientation with respect to the wellbore) determines the modified permeability field of the host rock and thus, numerical simulations of flow in fractured media are essential for estimating the anticipated change in reservoir productivity. However, numerical modeling of fluid flow in highly fractured media is challenging due to the explosive computational cost imposed by the explicit discretization of fractures at multiple length scales. A common strategy for mitigating this extreme cost is to crudely simplify the geometry of fracture network, thereby neglecting the important contributions made by all elements of the complex fracture system.</p><p>The proposed “Hierarchical Finite Element Method” (Hi-FEM; Weiss, Geophysics, 2017) reduces the comparatively insignificant dimensions of planar- and curvilinear-like features by translating them into integrated hydraulic conductivities, thus enabling cost-effective simulations with requisite solutions at material discontinuities without defining ad-hoc, heuristic, or empirically-estimated boundary conditions between fractures and the surrounding formation. By representing geometrical and geostatistical features of a given fracture network through the Hi-FEM computational framework, geometrically- and geomechanically-dependent fluid flow properly can now be modeled economically both within fractures as well as the surrounding medium, with a natural “physics-informed” coupling between the two.</p><p>SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.</p>


Author(s):  
Dustin Crandall ◽  
Goodarz Ahmadi ◽  
Grant Bromhal

Fractures in rocks enable the motion of fluids through the large, hot geologic formations of geothermal reservoirs. The heat transfer from the surrounding rock mass to the fluid flowing through a fracture depends on the geometry of the fracture, the fluid/solid properties, and the flow rate through the fracture. A numerical study was conducted to evaluate the changes in heat transfer to the fluid flowing through a rock fracture with changes in the flow rate. The aperture distribution of the rock fracture, originally created within Berea sandstone and imaged using a CT-scanner, is well described by a Gaussian distribution and has a mean aperture of approximately 0.6 mm. Water was used as the working fluid, enabling an evaluation of the efficiency of heat flux to the fluid along the flow path of a hot dry geothermal system. As the flow through the fracture was increased to a Reynolds number greater than 2300 the effect of channeling through large aperture regions within the fracture were observed to become increasingly important. For the fastest flows modeled the heat flux to the working fluids was reduced due to a shorter residence time of the fluid in the fracture. Understanding what conditions can maximize the amount of energy obtained from fractures within a hot dry geologic field can improve the operation and long-term viability of enhanced geothermal systems.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Mengying Li ◽  
Noam Lior

Analyses of fracturing and thermal performance of fractured reservoirs in engineered geothermal system (EGS) are extended from a depth of 5 km to 10 km, and models for flow and heat transfer in EGS are improved. Effects of the geofluid flow direction choice, distance between fractures, fracture width, permeability, radius, and number of fractures, on reservoir heat drawdown time are computed. The number of fractures and fracture radius for desired reservoir thermal drawdown rates are recommended. A simplified model for reservoir hydraulic fracturing energy consumption is developed, indicating it to be 51.8–99.6 MJ per m3 fracture for depths of 5–10 km.


2021 ◽  
Author(s):  
Martina Zucchi

<div> <p><span>Extensional tectonics and related magmatism affecting continental crust can favour the development of geothermal systems. Granitoids intruded in the upper crust represent the main expression of magmatism; they are strictly controlled by brittle structures during their emplacement and exhumation. The cooling of the magmatic bodies produce a thermal perturbation in the hosting rocks resulting in thermo-metamorphic aureoles of several meter thick, usually characterised by valuable ore deposits. After the emplacement and during the cooling stage such granitoids can promote the geothermal fluids circulation mainly through the fault zones. In case of favourable geological and structural conditions, geothermal fluids can be stored in geological traps (reservoirs), generally represented by rock volumes with sufficient permeability for storing a significant amount of fluid. Traps are confined, at the top, by rocks characterised by low, or very low permeability, referred to as the cap rocks of a geothermal system. Several studies are addressed to the study of fluid migration through the permeable rock volumes, whereas few papers are dealing with fluid flow and fluid-rock interaction within the cap rocks. </span></p> </div><div> <p><span>In this presentation, an example of fault-controlled geothermal fluid within low permeability rocks is presented. The study area is located in the south-eastern side of Elba Island (Tuscan Archipelago, Italy), where a succession made up of shale, marl and limestone (Argille a Palombini Fm, early Cretaceous) was affected by contact metamorphism related to the Porto Azzurro monzogranite, which produced different mineral assemblages, depending on the involved lithotypes. These metamorphic rocks were dissected by high-angle normal faults that channelled superhot geothermal fluids. Fluid inclusions analyses on hydrothermal quartz and calcite suggest that at least three paleo-geothermal fluids permeated through the fault zones, at a maximum P of about 0.8 kbar. The results reveal how brittle deformation induces fluid flow in rocks characterised by very low permeability and allow the characterisation of the paleo-geothermal fluids in terms of salinity and P-T trapping conditions. </span></p> </div>


2021 ◽  
Author(s):  
Warwick Kissling ◽  
Cecile Massiot

<p>Geothermal provides nearly 20% of New Zealand’s electricity as well as increasing opportunities for direct use. In New Zealand’s ~20 high temperature geothermal systems, fluids flow dominantly through fractured rocks with low matrix permeability. It is important to understand the nature of these fracture systems, and how fluids flow through them, so that the geothermal systems may be more efficiently and sustainably used. Here we present fluid flow calculations in several distinct discrete fracture models, each of which is broadly consistent with the fracture density and high dip magnitude angle distributions directly observed in borehole image logs at the Rotokawa Geothermal Field (>300°C, 175 MWe installed capacity). This reservoir is hosted in fractured andesites. In general, fractures are steeply dipping, and the reservoir is known to be compartmentalized.</p><p>Our new code describes fluid flow through large numbers (e.g., thousands) of stochastic fracture networks to provide statistical distributions of permeability, permeability anisotropy and fluid dispersion at reservoir scale (e.g., 1 km<sup>2</sup>). Calculations can be based on both the cubic flow law for smooth-walled fractures and the Forchheimer flow model, which includes an additional term to describe the nonlinear drag (i.e. friction) in real fractures caused by surface roughness of the fracture walls.</p><p>Models with fracture density consistent with borehole observations show pervasive connectivity at reservoir scales, with fluid flow (hence permeability) and tracer transport predominantly along the mean fracture orientation. As the fracture density is varied, we find a linear relationship between permeability which holds above a well-defined percolation threshold. Permeability anisotropy is in general high (~10 to 15), because of the steeply dipping fractures. As fracture density decreases, mean anisotropy decreases while its variability increases. Significant dispersion of fluid occurs as it is transported through the reservoir. These fracture models will inform more traditional continuum models of fractured geothermal reservoirs hosted in volcanic rocks, to provide a better description of fluid flow within reservoirs and aid the responsible and sustainable use of that resource in the future.</p>


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. B121-B130 ◽  
Author(s):  
Jared R. Peacock ◽  
Stephan Thiel ◽  
Graham S. Heinson ◽  
Peter Reid

Realization of enhanced geothermal systems (EGSs) prescribes the need for novel methods to monitor subsurface fracture connectivity and fluid distribution. Magnetotellurics (MT) is a passive electromagnetic (EM) method sensitive to electrical conductivity contrasts as a function of depth, specifically hot saline fluids in a resistive porous media. In July 2011, an EGS fluid injection at 3.6-km depth near Paralana, South Australia, was monitored by comparing repeated MT surveys before and after hydraulic stimulation. An observable coherent change above measurement error in the MT response was present and causal, in that variations in phase predict variations in apparent resistivity. Phase tensor residuals proved the most useful representation for characterizing alterations in subsurface resistivity structure, whereas resistivity tensor residuals aided in determining the sign and amplitude of resistivity variations. These two tensor representations of the residual MT response suggested fluids migrated toward the northeast of the injection well along an existing fault system trending north-northeast. Forward modeling and concurrent microseismic data support these results, although microseismic data suggest fractures opened along two existing fracture networks trending north-northeast and northeast. This exemplifies the need to use EM methods for monitoring fluid injections due to their sensitivity to conductivity contrasts.


Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. WC181-WC198 ◽  
Author(s):  
Mark W. McClure ◽  
Roland N. Horne

We describe a numerical investigation of seismicity induced by injection into a single isolated fracture. Injection into a single isolated fracture is a simple analog for shear stimulation in enhanced geothermal systems (EGS) during which water is injected into fractured, low permeability rock, triggering slip on preexisting large scale fracture zones. A model was developed and used that couples (1) fluid flow, (2) rate and state friction, and (3) mechanical stress interaction between fracture elements. Based on the results of this model, we propose a mechanism to describe the process by which the stimulated region grows during shear stimulation, which we refer to as the sequential stimulation (SS) mechanism. If the SS mechanism is realistic, it would undermine assumptions that are made for the estimation of the minimum principal stress and unstimulated hydraulic diffusivity. We investigated the effect of injection pressure on induced seismicity. For injection at constant pressure, there was not a significant dependence of maximum event magnitude on injection pressure, but there were more relatively large events for higher injection pressure. Decreasing injection pressure over time significantly reduced the maximum event magnitude. Significant seismicity occurred after shut-in, which was consistent with observations from EGS stimulations. Production of fluid from the well immediately after injection inhibited shut-in seismic events. The results of the model in this study were found to be broadly consistent with results from prior work using a simpler treatment of friction that we refer to as static/dynamic. We investigated the effect of shear-induced pore volume dilation and the rate and state characteristic length scale, [Formula: see text]. Shear-induced pore dilation resulted in a larger number of lower magnitude events. A larger value of [Formula: see text] caused slip to occur aseismically.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1211 ◽  
Author(s):  
Dongdong Liu ◽  
Yanyong Xiang

Multiple fractures have been proposed for improving the heat extracted from an enhanced geothermal system (EGS). For calculating the production temperature of a multi-fracture EGS, previous analytical or semi-analytical methods have all been based on an infinite scale of fractures and one-dimensional conduction in the rock matrix. Here, a temporal semi-analytical method is presented in which finite-scale fractures and three-dimensional conduction in the rock matrix are both considered. Firstly, the developed model was validated by comparing it with the analytical solution, which only considers one-dimensional conduction in the rock matrix. Then, the temporal semi-analytical method was used to predict the production temperature in order to investigate the effects of fracture spacing and fracture number on the response of an EGS with a constant total injection rate. The results demonstrate that enlarging the spacing between fractures and increasing the number of fractures can both improve the heat extraction; however, the latter approach is much more effective than the former. In addition, the temporal semi-analytical method is applicable for optimizing the design of an EGS with multiple fractures located equidistantly or non-equidistantly.


Sign in / Sign up

Export Citation Format

Share Document