Net Energy and CO2 Emissions Analysis of Using MRF Residue as Solid Recovered Fuel at Coal Fired Power Plants

Author(s):  
Alex C. Breckel ◽  
John R. Fyffe ◽  
Michael E. Webber

According to the waste management hierarchy published by the U.S. EPA, waste reduction and reuse are the most preferred modes of waste management, followed by recycling, energy recovery and lastly disposal. As many communities in the U.S. work towards sustainable waste management practices, recycling tends to be a cost-effective and common solution for handling municipal solid waste. With the introduction of single-stream recycling and automated materials recovery facilities (MRFs), where commingled recyclables are sorted into various commodity streams for sale to recycling facilities, recycling rates have steadily climbed in recent years. Despite increasing total recycling rates, contamination and diminishing returns for higher recovery ratios causes MRFs to landfill 5–25% of the incoming recycling stream as residue. This residue stream is composed primarily of plastics and fiber, both of which have high energy content that could be recovered instead of buried in a landfill. Plastics in particular are reported to have heat contents similar to fossil fuels, making energy recovery a viable end-of-life pathway. Sorting, shredding and densifying the residue stream to form solid recovered fuel (SRF) pellets for use as an alternative fuel yields energy recovery, displaced fossil fuels and landfill avoidance, moving more disposed refuse up the waste management hierarchy. Previous studies have shown that plastic, paper, and plastic-paper mixes are well suited for conversion to SRF and combustion for energy production. However, these studies focused on relatively homogenous and predictable material streams. MRF residue is not homogenous and has only a moderate degree of predictability, and thus poses several technical challenges for conversion to SRF and for straightforward energy and emissions analysis. This research seeks to understand the energetic and environmental tradeoffs associated with converting MRF residue into SRF for co-firing in pulverized coal power plants. A technical analysis is presented that compares a residue-to-SRF scenario to a residue-to-landfill scenario to estimate non-obvious energy and emissions tradeoffs associated with this alternative end-of-life scenario for MRF residue. Sensitivity to key assumptions was analyzed by considering facility proximity, landfill gas capture efficiency, conversion ratio of residue to SRF and the mass of residue used. The results of this study indicate that the use of MRF residue derived SRF in coal fired steam-electricity power plants realizes meaningful reductions of emissions, primary energy consumption, coal use and landfill deposition.

2012 ◽  
Vol 1475 ◽  
Author(s):  
Zoran Drace ◽  
Irena Mele ◽  
Michael I. Ojovan ◽  
R. O. Abdel Rahman

ABSTRACTAn overview is given on research activities on cementitious materials for radioactive waste management systems based on the IAEA Coordinated Research Project (CRP) held in 2007-2010. It has been joined by 26 research organizations from 22 countries which shared their research and practical activities on use of cementitious materials for various barrier purposes. The CRP has initially formulated the research topics considered within four specific streams: A) Conventional cementitious systems; B) Novel cementitious materials and technologies; C) Testing and waste acceptance criteria; and D) Modelling long term behaviour.The CRP has analysed both barrier functions and interactions envisaged between various components with focus on predisposal stage of waste management. Cementation processes have achieved a high degree of acceptance and many processes are now regarded as technically mature. A large body of information is currently available on proven waste conditioning technologies although novel approaches are continuing to be devised.Most of the existing technologies have been developed for conditioning of large amounts of operational radioactive waste from nuclear power plants and other nuclear fuel cycle facilities. However new waste streams including those resulting from legacy and decommissioning activities required improved material performance and technologies.The most important outcome of CRP was the exchange of information and research co-operation between different institutions and has contributed towards general enhancement of safety by improving waste management practices and their efficiency. The paper presents the most important results and trends revealed by CRP participants. The research contributions of participating organizations will be published as country contributions in a forthcoming IAEA technical publication.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Deodatus Kazawadi ◽  
Geoffrey R. John ◽  
Cecil K. King’ondu

Eminent depletion of fossil fuels and environmental pollution are the key forces driving the implementation cofiring of fossil fuels and biomass. Cogasification as a technology is known to have advantages of low cost, high energy recovery, and environmental friendliness. The performance/efficiency of this energy recovery process substantially depends on thermal properties of the fuel. This paper presents experimental study of thermal behavior of Kiwira coal waste/rice husks blends. Compositions of 0, 20, 40, 60, 80, and 100% weight percentage rice husk were studied using thermogravimetric analyzer at the heating rate of 10 K/min to 1273 K. Specifically, degradation rate, conversion rate, and kinetic parameters have been studied. Thermal stability of coal waste was found to be higher than that of rice husks. In addition, thermal stability of coal waste/rice husk blend was found to decrease with an increase of rice husks. In contrast, both the degradation and devolatilization rates increased with the amount of rice husk. On the other hand, the activation energy dramatically reduced from 131 kJ/mol at 0% rice husks to 75 kJ/mol at 100% rice husks. The reduction of activation energy is advantageous as it can be used to design efficient performance and cost effective cogasification process.


Author(s):  
Yang Yang ◽  
Nicholas Eisenbarth ◽  
Xiaoxu Song ◽  
Meng Zhang ◽  
Donghai Wang

The U.S. is sustainably producing of over 1 billion dry tons of biomass annually. This amount of biomass is sufficient to produce bioenergy that can replace about 30 percent of the nation’s current annual consumption of conventional fossil fuels. This then gives us the opportunity to turn waste into bioenergy that can assist in meeting the U.S. Renewable Fuel Standard (RFS). Besides being converted into bioethanol through the biochemical platform, biomass can also be utilized solid fuels to generate bioenergy through the thermochemical platform. Co-firing power plants use torrefied biomass pellets combined with coal for electricity generation. A two-step process, torrefaction followed by pelleting, is the prevailing technique that the industry is currently using to produce torrefied biomass pellets. Torrefaction converts biomass into biochar with high heating value, and pelleting densifies torrefied biochar into pellets with high durability and density. For the same purpose, we developed the ultrasonic pelleting and synchronized torrefaction of cellulosic biomass process, which is a single-step process to generate high quality solid fuel pellets with high heating value together with good durability and density. This study reports the first experimental investigation to demonstrate the feasibility of the novel process. Key process parameters have been identified, and their effects on the feasibility of generating quality torrefied biomass pellets are reported. Pellets are evaluated from the aspects of feasibility, durability, heating value, and thermal stability.


2012 ◽  
Vol 622-623 ◽  
pp. 1686-1690 ◽  
Author(s):  
Sew Tiep Ho ◽  
David Yoon Kin Tong ◽  
Elsadig Musa Ahmed ◽  
Chee Teck Lee

In Malaysia, it is prevalent among many householders on accumulation of end-of-life electronics items at home and many are unclear of its disposal directive, which are likely to be disposed as household wastes. An insight into understanding their e-waste management practices and key predictors in relation to e-waste recycling intention are essential as they will lay the foundation for future effective e-waste management. This paper reports a preliminary exploration of the construct of e-waste recycling intention among householders. The data was collected from 150 respondents in Malacca, Malaysia. The results from this study showed that all the six dimensions generated are reliable with high intercorrelation among the dimensions. This implies that the measures can be used for further data collection to validate the study.


Author(s):  
Anjali Sanil Kumar ◽  
Sethulakshmi Sanitha Shajan

Construction and demolition waste are the major issue as a direct consequence of increased global urbanization. It impacts the environmental efficiency of the construction industry, contributing to 35% of the global landfill. This research considers the two main fundamental factors affecting the demolished building waste management, which are the management hierarchy including the 3R strategies and the project life cycle and management tools. The inappropriate treatment and disposal of Construction and demolition waste give rise to the environmental pollution, land price, and natural resource consumption. This paper scrutinizes the concept of Construction and demolition waste management and review the extant studies in the managerial areas of Construction and demolition waste. These findings are aimed at clarifying the current and future practices of Construction and demolition waste management practices with an understanding for the sustainable governance. Keywords: Construction and demolition waste, management, review.


2000 ◽  
Author(s):  
James H. Nordahl

Abstract The purpose of this paper will be to discuss the role of nuclear power in world energy production during the 21st century. Nuclear power is currently a significant source of the global electricity supply, providing approximately 16% of the world’s electricity, and world consumption of nuclear power is continuing to grow. Worldwide nuclear capacity is projected to increase from 349 gigawatts (in 1998) to 368 gigawatts in 2010. Much of this near-term increase in nuclear capacity is due to aggressive plans for nuclear capacity expansion in Asia. Longer term high growth projections for nuclear power include assumptions of limited reactor aging effects, with more reactors operating after license renewals. In early 2000, the USNRC issued the first license renewals for nuclear power plants, for a 20 year extension beyond the expiration of the initial license term. In addition, utilities have already notified the USNRC of plans to submit renewal applications for more than 20 units by 2003. License renewal is expected to be an attractive option for companies as the most inexpensive means of future electricity generation. Another factor pointing towards the positive prospects for nuclear power in the future are the substantial improvements seen in plant safety, reliability and output over the last two decades. Due to improved management practices, higher reliability and output, and shorter refueling outages, the average production cost of US nuclear power plants has steadily decreased over the last five years. Based solely on economic factors, most US nuclear units should be able to compete in a competitive electricity market. Many additional factors point to nuclear power as an energy source which will become increasingly important in the 21st century. These factors include environmental considerations such as carbon emissions from fossil fuels, reduced waste quantities produced by nuclear power, and the security of supply of uranium reserves.


2020 ◽  
Vol 12 (5) ◽  
pp. 2088 ◽  
Author(s):  
Irena Wojnowska-Baryła ◽  
Dorota Kulikowska ◽  
Katarzyna Bernat

This article focuses on the end-of-life management of bio-based products by recycling, which reduces landfilling. Bio-plastics are very important materials, due to their widespread use in various fields. The advantage of these products is that they primarily use renewable materials. At its end-of-life, a bio-based product is disposed of and becomes post-consumer waste. Correctly designing waste management systems for bio-based products is important for both the environment and utilization of these wastes as resources in a circular economy. Bioplastics are suitable for reuse, mechanical recycling, organic recycling, and energy recovery. The volume of bio-based waste produced today can be recycled alongside conventional wastes. Furthermore, using biodegradable and compostable bio-based products strengthens industrial composting (organic recycling) as a waste management option. If bio-based products can no longer be reused or recycled, it is possible to use them to produce bio-energy. For future effective management of bio-based waste, it should be determined how these products are currently being managed. Methods for valorizing bio-based products should be developed. Technologies could be introduced in conjunction with existing composting and anaerobic digestion infrastructure as parts of biorefineries. One option worth considering would be separating bio-based products from plastic waste, to maintain the effectiveness of chemical recycling of plastic waste. Composting bio-based products with biowaste is another option for organic recycling. For this option to be viable, the conditions which allow safe compost to be produced need to be determined and compost should lose its waste status in order to promote bio-based organic recycling.


2020 ◽  
Vol 12 (19) ◽  
pp. 8221
Author(s):  
Georgios Banias ◽  
Maria Batsioula ◽  
Charisios Achillas ◽  
Sotiris I. Patsios ◽  
Konstantinos N. Kontogiannopoulos ◽  
...  

Municipal Solid Waste (MSW) management has been a major problem of modern cities for many years. Thus, the development of optimal waste management strategies has been a priority for the European Commission, especially in the transition toward a circular economy. In this paper, an analysis of different MSW treatment methods that can be effectively implemented in the Region of Central Macedonia (RCM) is provided, and their comparison from an environmental point of view is performed. The assessment is based on real data indicated in the recently updated Greek National Waste Management Plan, whereas the different scenarios developed include landfilling without energy recovery, landfilling with energy recovery, recycling and secondary materials recovery, mechanical-biological treatment, bio-waste composting and anaerobic digestion with energy recovery, and incineration with energy recovery. The obtained results illustrate that efficient waste streams sorting is of vital importance for the effective implementation of an integrated waste management system toward the sustainable management of MSW.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1361 ◽  
Author(s):  
Lari Shanlang Tiewsoh ◽  
Jakub Jirásek ◽  
Martin Sivek

India is one of the fastest developing countries in the world. To sustain this growth, energy and electricity demands will increase. In 2015, of the 1337 TWh produced, 916 TWh were from fossil fuels. We prepared several models of electricity demand from 2015 to 2030, based on publicly available datasets and trends. Models were tested on data from previous years and adjusted accordingly. From several scenarios, we decided to introduce two possibilities, i.e., a scenario using high energy savings in all sectors, and a scenario counting on a high industrial growth not supported by an equal increase of electricity savings. For both cases we prepared models for extreme situations: (1) where coal- and lignite-based power plants are preferred after slow-down of a renewable energy boom, and (2) with high utilization of renewable energy supported by natural gas and nuclear energy. With GDP and population increasing at the same rate as in previous years, the unambiguous result in all scenarios is a 2 to 3-fold increase of the electricity demand by 2030. On the electricity production side, all scenarios stress the role of coal, renewables and nuclear sources. Both energy and climate policies should be prepared for such a development in advance.


2018 ◽  
Vol 10 (12) ◽  
pp. 4624 ◽  
Author(s):  
Souhil Harchaoui ◽  
Petros Chatzimpiros

In the context of energy transition, agriculture is facing a double challenge, which is to reduce its fossil fuel dependency and provide—in addition to food—bioenergy to society for substitution to fossil fuels. The feasibility of this challenge depends on whether agriculture can achieve energy neutrality, meaning to balance its consumption of external energy by energy recovery from internal sources. Livestock feed is a major determinant in this balance. We use France as a demonstration case of the changing role of feed in the long-term agricultural energy metabolism and the challenge of reaching energy neutrality. Results show that current agriculture is structurally energy deficient to such an extent that its functional energy requirements almost equal its final produce. The energy recovery potential from crop residues and manure could at best cover the primary biomass equivalent of the external energy inputs to agriculture. Only a suppression of feed from cropland combined with very high energy recovery from agricultural residues could allow achieving energy neutrality and making agriculture a net energy source to society.


Sign in / Sign up

Export Citation Format

Share Document