Inhibiting the Re-Deposition of AuSn4 on Au/Ni Metallization Pads by Varying the Accessibility of Cu in Isothermally Aged SAC305 Solder Joints

Author(s):  
Subhasis Mukherjee ◽  
Abhijit Dasgupta ◽  
Julie Silk ◽  
Lay-ling Ong

Electroplated Ni/Au over Cu is a popular metallization for printed circuit board (PCB) finish as well as for component leads, especially for wire-bondable high frequency packages, where the gold thickness (≥ 20 μinches) requirement is high for wire bonding. Redeposition of bulk AuSn4 intermetallic compound (IMC) at Au/Ni contact pads of isothermally conditioned SnAgCu (SAC) solder joints is a critical reliability concern in these packages because the interfacial layer between redeposited AuSn4 IMC and initially formed IMC during reflow at the contact pad after reflow is brittle in nature. Redeposition of bulk AuSn4 IMC in Pb-free SAC solder joints (most popularly SAC305) is also believed to be dependent on the degree of access to copper. This study examines the effect of varying gold content (2–5 nominal weight-%) in the solder joint and accessibility to copper (by presence or absence of nickel barrier layer on top of Cu plating) on redeposition of AuSn4 IMCs at the interface of isothermally aged SAC305 solder joints for 720 hours at 121°C (0.8*Tmelt). The modified lap shear Iosipescu specimens used for the study are divided into two batches: i] In the first batch, both the copper platens to be soldered are electroplated with Au and Ni. Ni barrier layers are used to completely stop the solder from accessing the Cu in the substrate ii] In the second batch, one Cu platen is electroplated with Au and Ni barrier layer but the other platen is electroplated only with copper (no Nickel layer), to allow accessibility of Cu from the substrate. Representative solder joints from above two batches are then cross-sectioned and analyzed using environmental scanning electron microscopy (ESEM) and energy-dispersive x-ray spectroscopy (EDX) to investigate the composition, thickness and morphology of both bulk and interfacial IMCs. The first phase to form at the interface of the first batch of specimens after initial reflow is Ni3Sn4/(Ni,Cu)3Sn4. During the subsequent solid-state annealing, the redeposition of AuSn4 occurred in systems plated with Au/Ni on both sides. Contrarily, in the second batch when the solder joint has copper access from one side of the joint, the first intermetallic after reflow to form is (Cu,Ni,Au)6Sn5/(Cu,Au)6Sn5 and no redeposition of AuSn4 is observed after solid state annealing except for the solder joint containing nominal 5wt-% of Au.

Author(s):  
Ken Holdermann ◽  
Gayatri Cuddalorepatta ◽  
Abhijit Dasgupta

This study examines microstructural recrystallization in Sn3.0Ag0.5Cu (SAC305) solder joints due to isothermal, mechanical cycling. It is well known that after reflow SAC solder joints at length scales of 200 μm consist of only a few grains [1–3]. This coarse microstructure makes the joint mechanically inhomogeneous and anisotropic, and non-repeatable. Creep tests conducted on modified lap-shear SAC305 solder joints therefore show significant scatter in their results, because of piece-to-piece variability in the microstructural morphology [1]. However, results of cyclic fatigue tests of the same SAC305 solder joints show less significant scatter [4]. One possible hypothesis is that dynamic recrystallization occurs during the cycling, resulting in a much finer (and hence more isotropic, homogeneous and repeatable) microstructure. Recrystallization of solder has been reported to occur under thermal cycling [5–6]. The objective of this study is to assess the extent of recrystallization of SAC305 solder during isothermal mechanical cycling fatigue. Focused ion beam technology is used to prepare a very clean and even surface to reveal the SAC305 grains in modified lap-shear test specimens, both before and after isothermal mechanical cycling. Polarized light microscopy, scanning electron microscopy and focused ion beam microscopy are used to reveal the microstructure of these SAC305 solder joints. The results show that mechanical cycling produces the same type of recrystallization behavior of SAC solder, as has been reported in the literature for thermally cycled specimens [5–6]. The number of grains in the SAC305 solder joint changes from a few to hundreds, during mechanical cycling. As expected, the recrystallization is observed to be localized around cracks in the solder joint, where the local stresses are the highest. The minimal grain size near the cracked region is approximately 4–6 μm and the average grain size increases significantly with increasing distance from the crack face. The transition of solder from very few (non-homogeneous and anisotropic) to a homogenous recrystallized state may be one possible explanation for differences in the extent of scatter in the data from creep tests and isothermal mechanical fatigue tests.


2020 ◽  
Vol 33 (1) ◽  
pp. 47-56
Author(s):  
Norliza Ismail ◽  
Azman Jalar ◽  
Maria Abu Bakar ◽  
Nur Shafiqa Safee ◽  
Wan Yusmawati Wan Yusoff ◽  
...  

Purpose The purpose of this paper is to investigate the effect of carbon nanotube (CNT) addition on microstructure, interfacial intermetallic compound (IMC) layer and micromechanical properties of Sn-3.0Ag-0.5Cu (SAC305)/CNT/Cu solder joint under blast wave condition. This work is an extension from the previous study of microstructural evolution and hardness properties of Sn-Ag-Cu (SAC) solder under blast wave condition. Design/methodology/approach SAC/CNT solder pastes were manufactured by mixing of SAC solder powder, fluxes and CNT with 0.02 and 0.04 by weight percentage (Wt.%) separately. This solder paste then printed on the printed circuit board (PCB) with the copper surface finish. Printed samples underwent reflow soldering to form the solder joint. Soldered samples then exposed to the open field air blast test with different weight charges of explosives. Microstructure, interfacial IMC layer and micromechanical behavior of SAC/CNT solder joints after blast test were observed and analyzed via optical microscope, field emission scanning microscope and nanoindentation. Findings Exposure to the blast wave induced the microstructure instability of SAC305/Cu and SAC/CNT/Cu solder joint. Interfacial IMC layer thickness and hardness properties increases with increase in explosive weight. The existence of CNT in the SAC305 solder system is increasing the resistance of solder joint to the blast wave. Originality/value Response of micromechanical properties of SAC305/CNT/Cu solder joint has been identified and provided a fundamental understanding of reliability solder joint, especially in extreme conditions such as for military applications.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 776
Author(s):  
Nur Syahirah Mohamad Zaimi ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Norainiza Saud ◽  
...  

This paper elucidates the effect of isothermal ageing at temperature of 85 °C, 125 °C and 150 °C for 100, 500 and 1000 h on Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with the addition of 1 wt% kaolin geopolymer ceramic (KGC) reinforcement particles. SAC305-KGC composite solders were fabricated through powder metallurgy using a hybrid microwave sintering method and reflowed on copper substrate printed circuit board with an organic solderability preservative surface finish. The results revealed that, the addition of KGC was beneficial in improving the total thickness of interfacial intermetallic compound (IMC) layer. At higher isothermal ageing of 150 °C and 1000 h, the IMC layer in SAC305-KGC composite solder was towards a planar-type morphology. Moreover, the growth of total interfacial IMC layer and Cu3Sn layer during isothermal ageing was found to be controlled by bulk diffusion and grain-boundary process, respectively. The activation energy possessed by SAC305-KGC composite solder for total interfacial IMC layer and Cu3Sn IMC was 74 kJ/mol and 104 kJ/mol, respectively. Based on a lap shear test, the shear strength of SAC305-KGC composite solder exhibited higher shear strength than non-reinforced SAC305 solder. Meanwhile, the solder joints failure mode after shear testing was a combination of brittle and ductile modes at higher ageing temperature and time for SAC305-KGC composite solder.


2015 ◽  
Vol 27 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Peter K. Bernasko ◽  
Sabuj Mallik ◽  
G. Takyi

Purpose – The purpose of this paper is to study the effect of intermetallic compound (IMC) layer thickness on the shear strength of surface-mount component 1206 chip resistor solder joints. Design/methodology/approach – To evaluate the shear strength and IMC thickness of the 1206 chip resistor solder joints, the test vehicles were conventionally reflowed for 480 seconds at a peak temperature of 240°C at different isothermal ageing times of 100, 200 and 300 hours. A cross-sectional study was conducted on the reflowed and aged 1206 chip resistor solder joints. The shear strength of the solder joints aged at 100, 200 and 300 hours was measured using a shear tester (Dage-4000PXY bond tester). Findings – It was found that the growth of IMC layer thickness increases as the ageing time increases at a constant temperature of 175°C, which resulted in a reduction of solder joint strength due to its brittle nature. It was also found that the shear strength of the reflowed 1206 chip resistor solder joint was higher than the aged joints. Moreover, it was revealed that the shear strength of the 1206 resistor solder joints aged at 100, 200 and 300 hours was influenced by the ageing reaction times. The results also indicate that an increase in ageing time and temperature does not have much influence on the formation and growth of Kirkendall voids. Research limitations/implications – A proper correlation between shear strength and fracture mode is required. Practical implications – The IMC thickness can be used to predict the shear strength of the component/printed circuit board pad solder joint. Originality/value – The shear strength of the 1206 chip resistor solder joint is a function of ageing time and temperature (°C). Therefore, it is vital to consider the shear strength of the surface-mount chip component in high-temperature electronics.


2021 ◽  
Vol 18 (3) ◽  
pp. 137-144
Author(s):  
Dania Bani Hani ◽  
Raed Al Athamneh ◽  
Mohammed Aljarrah ◽  
Sa’d Hamasha

Abstract SAC-based alloys are one of the most common solder materials that are utilized to provide mechanical support and electrical connection between electronic components and the printed circuit board. Enhancing the mechanical properties of solder joints can improve the life of the components. One of the mechanical properties that define the solder joint structure integrity is the shear strength. The main objective of this study is to assess the shear strength behavior of SAC305 solder joints under different aging conditions. Instron 5948 Micromechanical Tester with a customized fixture is used to perform accelerated shear tests on individual solder joints. The shear strength of SAC305 solder joints with organic solderability preservative (OSP) surface finish is investigated at constant strain rate under different aging times (2, 10, 100, and 1,000 h) and different aging temperatures (50, 100, and 150°C). The nonaged solder joints are examined as well for comparison purposes. Analysis of variance (ANOVA) is accomplished to identify the contribution of each parameter on the shear strength. A general empirical model is developed to estimate the shear strength as a function of aging conditions using the Arrhenius term. Microstructure analysis is performed at different aging conditions using scanning electron microscope (SEM). The results revealed a significant reduction in the shear strength when the aging level is increased. An increase in the precipitates coarsening and intermetallic compound (IMC) layer thickness are observed with increased aging time and temperature.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1295
Author(s):  
Sri Harini Rajendran ◽  
Seung Jun Hwang ◽  
Jae Pil Jung

This study investigates the shear strength and aging characteristics of Sn-3.0Ag-0.5Cu (SAC 305)/Cu joints by the addition of ZrO2 nanoparticles (NPs) having two different particle size: 5–15 nm (ZrO2A) and 70–90 nm (ZrO2B). Nanocomposite pastes were fabricated by mechanically mixing ZrO2 NPs and the solder paste. ZrO2 NPs decreased the β-Sn grain size and Ag3Sn intermetallic compound (IMC) in the matrix and reduced the Cu6Sn5 IMC thickness at the interface of lap shear SAC 305/Cu joints. The effect is pronounced for ZrO2A NPs added solder joint. The solder joints were isothermally aged at 175 °C for 24, 48, 144 and 256 h. NPs decreased the diffusion coefficient from 1.74 × 10–16 m/s to 3.83 × 10–17 m/s and 4.99 × 10–17 m/s for ZrO2A and ZrO2B NPs added SAC 305/Cu joints respectively. The shear strength of the solder joints decreased with the aging time due to an increase in the thickness of interfacial IMC and coarsening of Ag3Sn in the solder. However, higher shear strength exhibited by SAC 305-ZrO2A/Cu joints was attributed to the fine Ag3Sn IMC’s dispersed in the solder matrix. Fracture analysis of SAC 305-ZrO2A/Cu joints displayed mixed solder/IMC mode upon 256 h of aging.


2017 ◽  
Vol 29 (3) ◽  
pp. 164-170 ◽  
Author(s):  
Hao Wu

Purpose This paper aims to inspect the defects of solder joints of printed circuit board in real-time production line, simple computing and high accuracy are primary consideration factors for feature extraction and classification algorithm. Design/methodology/approach In this study, the author presents an ensemble method for the classification of solder joint defects. The new method is based on extracting the color and geometry features after solder image acquisition and using decision trees to guarantee the algorithm’s running executive efficiency. To improve algorithm accuracy, the author proposes an ensemble method of random forest which combined several trees for the classification of solder joints. Findings The proposed method has been tested using 280 samples of solder joints, including good and various defect types, for experiments. The results show that the proposed method has a high accuracy. Originality/value The author extracted the color and geometry features and used decision trees to guarantee the algorithm's running executive efficiency. To improve the algorithm accuracy, the author proposes using an ensemble method of random forest which combined several trees for the classification of solder joints. The results show that the proposed method has a high accuracy.


2019 ◽  
Vol 16 (1) ◽  
pp. 13-20
Author(s):  
Ephraim Suhir ◽  
Sung Yi ◽  
Jennie S. Hwang ◽  
Reza Ghaffarian

Abstract The “head-in-pillow” (HnP) defects in lead-free solder joint interconnections of Integrated Circuit (IC) packages with conventional (small) standoff heights of the solder joints, and particularly in packages with fine pitches, are attributed by many electronic material scientists to the three major causes: attributes of the manufacturing process, solder material properties, and design-related issues. The latter are thought to be caused primarily by elevated stresses in the solder material, as well as by the excessive warpage of the Printed Circuit Board (PCB)-package assembly and particularly by the differences in the thermally induced curvatures of the PCB and the package. In this analysis, the stress and warpage issue is addressed using an analytical predictive stress model. The model is a modification and an extension of the model developed back in 1980s by the first author. It is assumed that it is the difference in the postfabrication deflections of the PCB-package assembly that is the root cause of the solder material failures and particularly and perhaps the HnP defects. The calculated data based on the developed stress model suggest that the replacement of the conventional ball grid array (BGA) designs with designs with elevated standoff heights of the solder joints could result in significant stress and warpage relief and, hopefully, in a lower propensity of the IC package to HnP defects as well. The general concepts are illustrated by a numerical example, in which the responses to the change in temperature of a conventional design, referred to as BGA, and a design with solder joints with elevated standoff heights, referred to as column grid array (CGA), are compared. The computed data indicated that the effective stress in the solder material was relieved by about 40% and the difference between the maximum deflections of the PCB and the package was reduced by about 60%, when the BGA design was replaced by a CGA system. Although no definite proof that the use of solder joints with elevated standoff heights will lessen the package propensity to the HnP defects is provided, the authors nonetheless think that there is a reason to believe that the application of solder joints with elevated standoff heights could result in a substantial improvement in the general IC package performance, including, perhaps, its propensity to HnP defects.


2021 ◽  
Vol 18 (3) ◽  
pp. 97-112
Author(s):  
Paul. T. Vianco ◽  
Alice. C. Kilgo ◽  
Bonnie. B. McKenzie ◽  
Shelley Williams ◽  
Robert Ferrizz ◽  
...  

Abstract The performance and reliability were documented for solder joints made between the 96.5Sn-3.0Ag-0.5Cu (wt.%, abbreviated SAC305) Pb-free solder and a Ag-Pd-Pt thick film conductor on an alumina substrate. The Sheppard’s hook pull test was used to assess the solder joint strength. The Part 1 study confirmed that the solder joint fabrication process had a wide process window. The current study determined that the SAC305 solder joints maintained that robustness after accelerated aging at temperatures of 70–205°C and time durations of 5–200 d. Short-term aging of 5–10 d caused a peak in the pull strength peak that resulted from precipitation hardening by Ag-Pd and (Pd, Pt)xSny intermetallic compound (IMC) particles. The pull strengths did not decrease significantly after longer aging times at 70°C and 100°C; those conditions were accelerations of typical service lifetimes. Longer aging times at temperatures of 135–205°C resulted in a gradual, albeit not catastrophic, strength decrease when the precipitation hardening mechanism was lost to dissolution of the particle phases and their reprecipitation at the solder/alumina interface. The failure modes were ductile fracture in the solder except for the most severe aging conditions. These findings confirmed that the SAC305 solder/Ag-Pd-Pt thick film interconnections have excellent long-term reliability for hybrid microcircuit and high-temperature electronics applications.


Sign in / Sign up

Export Citation Format

Share Document